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PREFACE

iﬁis Report concludes a five-part series on the math-
ematical theory of non-atomic games. (See-RM=5468-PR,
-RM~5842-PR, RM-6216, and RM-6260.) The tem "non-atomic,"
borrowed from measure theory and probability theory, sig-
nifies that in these games with infinitely many partici-
pants, no single individual is big enough to influence the
outcome by himself. Such games have served as mathematical
models for large-scale competitive systems in economics or
politics. 1In this Report the applications of the theory
to a class of economics models are developed.

Dr. Aumann, a Rand consultant, is a professor of Math-
ematics at the Hebrew University in Jerusalem and is pres-
ently on leave to the University of California at Berkeley
and Stanford University. Part of the overall support for
this work has come from these institutions, as well as from
certain ONR contracts and from the National Science Founda-
tion through the Mathematics Social Science Board of the

Center for Advanced Study in the Behavioral Sciences.
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SUMMARY

The value of a multiperson game is a function that
associates to each player a number that, intuitively speak-
ing, represents an a priori evaluation of what it is worth
to play the game from his position. A non-atomic game is
a special kind of infinite-person game in which no indi-
vidual player has significance. The value concept was
originally defined only for finite-person games; in Parts
I-II1 of this series several approaches to the problem of
extending the value concept to non-atomic games were de-
veloped. 1In Part IV the relationship of the value to
another solution concept--the core--was considered.

In the present Part V, the results of the previous
parts are applied to a certain class of basic economic
models, interpretable either as exchange economies with
money or as productive economies. The general conclusion,
which takes a number of specific forms, is that under
fairly wide conditions the value of the game derived from
such a model exists and coincides with the unique payoff
distribution in the core of the game, as well as with the
unique payoff distribution associated with the competitive
equilibrium or equi‘ibria of the underlying model. This
exact agreement of several solutions, in an infinite-person
setting, may be compared with known results on the converg-
ence of these solutions in the limit, in similar models

with large but finite numbers of participants.

:
;

o

Conction.




~vii-

CONTENTS

PREFACE ® 0 8 0 0 0 P 0 0 @ e & 2 0 0 ° 00 00 00 00 0 0 0 0 0 9 8 0 0 0 S0 A S se 0e
SUMMARY . .vvvvevoenonnnncnsns

Section

28‘
29.
30.

31.
32.
33.
34,
35.
36.
37.
38.
39.
40.
41.
42.

INTRODUCTION TO PART V ....ccvvvivennneonnnnnans
CONCEPTUAL PRELIMINARIES .....covvvvevnvcacennns

DESCRIPTION OF THE MODEL AND ECONOMIC
INTERPRETATION .....cvvvvnens. e

STATEMENT OF MAIN RESULTS .....
THE COMPETITIVE EQUILIBRIUM ...eovvvnvnrnenonsn.
EXAMPLES .« v evenvesennnsonoonenennenosensosmen
DISCUSSION OF THE LITERATURE ........
THE SPACE Uy «-.evvvee.
FURTHER PREPARATIONS .....
BASIC PROPERTIES OF &-APPROXIMATIONS .......... .
THE DERIVATIVES OF THE FUNCTION ug ..........
THE FINITE TYPE CASE .....ovvevereneneneneneonns
PROOF OF THEOREM G ........... e eieneaeaas
THE ASYMPTOTIC VALUE OF A MARKET ...............

POSSIBILITIES FOR EXTENSION OF THE MAIN
MSULTS P 6 06086 00000 0 8500 0 ¢ 0 0000900002 G 0N et

REFERENCES 0.Il'...".'..'CC.'QO....!...'. 0 0 8 00 0 0.0

114

v

181

190




28. INTRODUCTION TO PART V

This is the fifth in a series of papers with the
overall title '"Values of Non-Atomic Games'.* Familiarity
with the previous parts will be assumed throughout. Num—
eration of the sections will be continued here, to enable
-eagy reference to the previous parts. Other conventions
established previously will also be maintained here.

In this part we will apply the theory developed in
the previous parts to certain economic models. These
models may be interpreted eiti:». as monetary exchange
economies**, or as productive economies similar to—but
more general than—the one described in the introduction
to Part IV.*#* OQOur chief result is that under fairly wide
conditions, the game derived from such a model is in pNA,

that there is a unique point in its core, and that this

*For the previous parts, see [I, II, TiI, IV] in the
list of references.

##].e. "markets with money" or "“markets with side
payments'; cf. [S«Sl, §-8,, 88]. These are special

cases of the more classical Walrasian exchange economies
(cf., e.g., [N, D-Sca, A1]), which m2y be callea '"markets

without side payments', and which we hope to study from
the value viewpoint in a subsequent paper.

*#%See Formula (26.1) and the subsequent discussion.
Incidentally, the word "monetary'" in the title of this
part refers only to the first interpretation; the produc-—
tion interpretation is not connected with money.




unique point coincides with the value. We shall also de-

fine the notion of competitive equilibrium for such economies,
and show that this too then yields a unique payoff, which
also coincides with the value, and therefore with the unique
core point.

Section 29 is devoted to a careful conceptual discus-
sion of several aspects of economic models with a continuum
of economic agents. This is needed for a proper understand-
ing of Section 30, in which we introduce and motivate the
particular economic model that is the subject of this paper.
Section 31 contains the statement of the results concerning
the relation between the core and the value. In Section 32
we will introduce and discuss the competitive equilibrium,
and relate it to the previously described concepts. Sec-
tion 33 is devoted to some examples, and Section 34 to a
brief discussion of related literature. Sections 35 through
41 are devoted to the proofs. In the last section, Section
42, we discuss some possibilities for extensions of our
results.

It is to be stressed that the proof of the main result--
i.e., the membership of our game in pNA, the existence of a
unique point in the core and its coincidence with the value--
does not make any use of the notion of competitive equilibrium;

rather, it is based directly on Theorem F in Part IV.




29. CONCEPTUAL PRELIMINARIES

In this section we would like to clarify some of the
ideas used in connection with economic models with a con-
tinuum of economic agents. Specifically, we shall discuss
the use of integration in connection with such modgls, and
the ideas of payoff vector, allocation, and side-payment
game in such a context. This section does not contain a
discussioﬁ of the larger issues involved in the use of
continuous game and economic models; for such a discussion,
see [M-S] and [A1].

Properly to understand the use of integration in con-
nection with continuous economic models, it is convenient
to use an analogy with physics, where continuous models
are plentiful and well-—-understood. Let us recall the prob—
lem of computing (or for that matter, defining) the gravi-
tational force exerted by a solid beam I on a given mass
point x in space, whose mass is, say, M. One divides I
into "small" pieces, calling a typical piece 'as'". Then
if p is the distance function and s is a point in As, all
points in As have a distance approximately P(x, s) from x.
Therefore if u(as) denotes the mass of as, the gravita-

tional force exerted by As on x is approximately

Y PPN
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Mi(as) (8 - x)
p (s, x)

(whose magnitude is Mp(As)/Pz(s, X)); and the total gravi-

tational force exerted by I on x is approximately

(29.1) £IM(s — x)/p3(s, x)1u(as),

the sum being taken over all the "small" pieces into whkich

we have divided I. When we say that aAs is "small", what

we mean is that its diameter is small; precisely, what is
required is that (s — x)/Pg(s,\x) be almost constant as s

ranges over As.

The next step is to pass to the limit. As the dia-

meters of thé As tend to 0, the eipression (29.1) tends to

(29.2) [1M(s — x)/0°(s, x)]uCds);

at the same time the approximations become better and better,
and the errors involved tend to 0. Hence we conclude that
the total force exerted by I on x is in fact precisely the

integral (29.2).

There is also a slightly different way of looking at

the integral (29.2). One thinks of I as being divided into

L St
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"infinitesimal pieces' ds, each with an "infinitesimal
mass'" nu(ds). The piece ds has an infinitesimal diameter;
if one wishes one can think of it as consisting cf a
single point, located at s. The force exerted by it on

x is
M(s - X)/ﬁ3(s, x) Ju(ds);,

and the total force is the "sum" of these infinitesimal
forces, namely theAintegral (29.2).

Some readers may be disturbed by the use of terms
“such as "infinitesimal", which we have not properly de-
fined.* SuchAreaderé may take the discussion;in terms of
infinitesimals to be simpiy an abbreviation for the some—
-what more lengthy discussion involving “small pieces" and
a ;imitihg process. Imprecise as it may be, théqgh, the
‘discussion in ‘terms of inf;nitgsimals has a certain direct
conceptual appegl, which is lackiig in the limit discuésionw

Each infinitesimal piece ds exerts a force which can be

LE calculated exactly——not{approximately——by a single straight—

Y3 forward application of Newton's. formula for the gravitational

,;é *This is not to say that they cannot be prOperly de—
44 fined; cf. [Rob] ‘
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attraction between two mass points. And the total force

is simply ﬁhe sum of these individual forces. By comparison,

the limit approach seems conceptually devious.
5 In thé case of economic models, the "infinitesimal"
ﬂ appro;dh has an additional intuitive advantage. People
still think even of very large economies as consisting of
individual agents; intuitively, then, such an agent can
be associated with an "infinitesimal piece''. In the phy-
sical analogy, one could think of our beam I as being made
up of many individual mass points—as indeed it is, if one
considcrs an atom a point. One replaces this set of mass
points by a continuum—both for mathematical conveénience
and for a better physical understanding of the gravita-
tional field sround a beam. But in intuitive discussion
of the integral, it may still be convenient to associate
an "infinitesimal piece" with one of the individual mass
points. It should be stressed, though, that such an asso-
ciation is not necessary, neither in the economic nor in
the physical situation. In both situations, the infinites-—
imal piece can be though of as a set of individuals which
has an infinitesimal mass or measure, and all of whose
members have the seme physical or economic properties
(for example the same distance from x in the physical case,

the same utility in the economic case).
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In intuitive discussion in the sequel, we shall adopt
the convention of associating an infinitesimal with a single
individual. This is chiefly because it is easier, e.g.,
to write '"the trader ds" rather than ''the seét ds of traders"
or "one of the traders in ds'; if the reader wishes, he can
substitute the alternative interpretation. The reader
should be careful to note that we are associating an in-
dividual with an infinitesimal subset ds of I, not with

a point* s in I. We will adopt the convention that the

‘point named s is always a member of the set named ds.

It will be understood that all functions of s that appear

in the analysis are constant on every ds. For example,

we shall déscribe the initial bundle of a trader ds by

an expression of the form a(s)u(ds); intuitively, it

is to be understood that s is & point in the infinitesimal
set ds, and that a is a function on I that is constant on

ds, so that it does not matter which point s in ds is chosen.

*It may seem we are backtracking a little from the inter—
pretation given in Section 2, where we said simply that '"the
members of I are players". Also in [Al]’ the individual

points in the continuum were called "traders'; and even in
the introduction to Part IV, we referred to a "producer s".
There is, however, no real change in outlook; here we are
simply being more careful as regards interpretation. 1In
the sequel it may again become convenient to refer to a
point in I as a '"player" or "trader", and then we shall not

hesitate to do so. in spite of the loss of strict accuracy.
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Readers who prefer to think of the integral in terms of
the limiting process may make the necessary re—interpreta-
tions, in which ds is replaced by as, s is a point in as,
and As is chosen so that & is "almost constant" on it.

In closing the discussion of this physical analogy,
we would like to stress that the whole discussion is con-
cerned exclusively with the passage from the given phy-
sical situation to the mathematical model. Once one accepts
the integral as properly representing the desired force,
the rest of the treatment can be perfectly precise, in the
best traditions of modern mathematical analysis. The sit-—
uation in economics is similar; the mathematical model,
once constructed, can be analyzed with the ordinary mathe-
matical tools, with the precision that is characteristic
of mathematical analysis. Only in constructing the model,
and in relating it to the economic ideas that motivate its
construction, is it convenient to make use of words such
as "infinitesimal", and of the corresponding ideas.

Next, we would like to discuss the idea of ''payoff
vector" and related ideas. 1In a game with a finite set
N of players, a payoff vector is simply a member x of EN,

i.e.. a function from N to the reals; intuitively, it is

oot T
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to be thodght of as an outcome, where the i-th component
x(1i) signifies the payoff* to player 1i.

When we are thinking in terms of coalitions rather
than individuals, it is convenient to think of the payoff

vector x as a measure on N, defined for all S ¢ N by

x(8) =  x(i);
ieS

here x(S) signifies the‘total payoff to S under the out-
come x. This point of view is especially useful in con—
nection with games with a continuum of players, such as
we are studying in this series of papers, say games with
a player space (I, ¢). In such games a payoff vector may
often be represented by a non-atomic measure; this means
that the individual player gets only an infinitesimal pay—

off, whereas the total payoff to a coalition is often a

*Depending on the context, this payoff could be in
money; in a consumer product, such as the '"finished good"
of the production model mentioned in Part IV and further
to be developed in Section 30 below; or in the '"transfer-
able utility" which may be familiar to some of our readers
from n—person game theory. Regardless of the direct inter- -
pretation of the payoff, however, when we apply the notion
of the value of the game (unlike some other solution concepts)
we are in effect assuming that the payoff is a utility in—
dicator of the '"cardinal" kind, in the sense that the re-
sulting solution will generally be invariant only under
linear order—preserving transformations of the payoffs.
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positive number. For the sake of generality,* we define a

payoff vector to a game with player space (I, &) to be any

member of FA.

Having interpreted the notion of '"paycff vector" in

the continuous case, we now come to the notion of "game" :

itself. This was interpreted in Sec. 2 as a real—-valued A
set function v. The number v(S), for S ¢ &, was interpreted
as the "total payoff that the coalition S, if it forms, can
obtain for its members'", and was called the "worth" of S.

Now there are several assumptions about the nature of

|
i .i a game that are implicit in the use of a real-valued set
| function to describe it; we would like to discuss just one
! of them here, namely the assumption of "unrestricted side
; payments'. This means that not only can each coalition S
obtain for its members a total of v(S), but that it can
also distribute this total among its members in any way

it pleases. Thus, if v is any member of FA with y(S) = v(S),

then S can act so that each T ¢ S will obtain y(T), or in

*We have not found it necessary to allow more generality,
e.g. to allow unbounded measures. Neither is it conveneient,
on the other hand, to restrict the generality, e.g. to con—
sider only completely additive measures. This is because
FA is a subspace of BV, and if we look at a member u of FA
as a game, then the payoff vectors naturally associated
with this game cannot be expected to be completely additive
if 4 is not; for example, the core of u consists of the
unique point u itself.
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other words, so that each "member'" ds of S will obtain
v(ds).

Throughout this paper, we shall deal only with 'games
with unrestricted side payments', i.e., games obeying this
condition. Indeed, if this condition were not satisfied,
i.e., if only certain distributions totaling v(S) could
be obtained by S. then the situation would not be adequately
described by the function v. To describe the situation
in this case, one must at least specify, for each S, ex—
actly which distributions of payoff the coalition S can

obtain for its members (cf. [A-Pel]). Such an extension

of the underlying model we hope to treat in another paper.

o
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30. DESCRIPTION OF THE MODEL AND ECONOMIC INTERPRETATION

Let () denote the nonnegative orthant of a Euclidean
space E®, whose dimension n will be fixed throughout.
Superscripts will be used to denote coordinates. For x
and y in E" we write x >y if xi 2 yi for all i, x> y
if x > ybut not x =y, and x > y if xi > yi for all {.

A real-valued function f on 3 will be called nondecreasing

if x > y implies f(x) 3 £f(y), and increasing if x > y
implies £(x) > £(y). The scalar product 22_1 xiyi of two
members x and y of E" will be denoted x'y. The symbol O
will denote both the number zero and the origin of a
Euclidean space; no confusion will result.

Let u € NA+; +i will be fixed throughout. For con-
venience we shall assume that u(I) = 1, although most of
our results, and in particular all those stated in Section
31, are true without this assumption* as weli. If g is
a y—integrable function on I and § € ¢, we will use the
notations fsg, jsgdu, jsg(s)du(s), and jsg(s)u(ds) inter—-
changeably. All occur in the literature, and for different
purposes one or the other will be more convenient. When
the range of integration in an integral is not specified,

*The case of general u(I) $ 0 follows trivially from
that in which u(I) = 1.

h anvaie, s s s s I i | v .l e i Bk i
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it will be understood to be I; thus (g and Ilg(s)p(ds) are
the same thing. The phrases "integrable", "almost all",
and so on, will be used to mean "u—integrable", "u—almost
all", and so on.

For each s ¢ I, let s(s) be in Q, and let u(-, 8) be
an increasing nonnegative real-valued function on . We

will be concerned with the set function v defined by

(30.1) v(S) = max (Is“(i(s)’ 8)du(s) : x(s) € a for all s
and fsfﬁ” = Jsﬁd“}’

the maximum being taken over all y—integrable functions x
.that satisfy the constraints. Note that the equation in
the constraints is a vector equation; thus when we say
that x is p—integrable, we mean that all its coordinates
are py—integrable. Naturally, in order that the integrals
inside the curly brackets be meaningful, it is necessary
to impose certain measurability and integrability condi-
tions on the functions u and 8. Furthermore, even if the

integrals involved exist, it is by no means clear or even

always true that the expression being maximized is bounded;
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and even if it is bounded, its supremum may not be attained.*
These matters will be treated in the next section, where
sufficient conditions will be imposed on u and a to ensure
that the integrals involved exist, and that the maximum
exists. In this section we would like to concentrate on
the economic interpretations of the set function w.

The reader will recall from the introduction that
there are two economic interpretations, one in terms of
monetary exchange economies and one in terms of productive
economies. We would like to present the interpretation
in terms of productive economies first, since it is simpler.
There.are n kinds of raw material, and only one kind of
finished good. The space I consists of infinitesimal
producers ds. Given a bundle, (i.e. vector) x in . of
raw materials, producer ds can produce an amount u(x, s)u(ds)

of the finished good. Next, a(s)u(ds) is the bundle of

*It is quite possible for the sup to exist without the
max existing. We have not treated such situations. One
reason is that they are conceptually somewhat slippery.

It is of course possible to déefine +(S) by means of the

sup, but the idea of the "worth" of a coalition then loses
some of its intuitive force. The way we are used to think—
ing about core and value would presumably also need some
revision. I1f, for example, v(I) = v(I), and the sup in

the definition of v(I) is not attained, then we cannot
really think of v as a distribution of the amount avail—
able to I, since v(I) is not really available to I. A more
important reason for insisting that the sup be attained is
that the mathematics would otherwise be even more complicated
than it now is. For a discussion ol where one is led if one

replaces "max" by "sup", see Subsection D of Section 33 and
Subsection D of Section 42.
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raw materials initially available to the producer ds; hence
the total bun&le of raw materials initially available to a
coalition S is jsg(s)u(ds)-- Isiﬁ“’ Now S may reallocate
this amount among its members in any way it pleases; that

is, if the members of S agree, they may assign to each member
ds of S an amount x(s)u(ds) rather than a(s)u(ds), on condi-
tion that x(s) € 0 and [xdu = [ady. Then if the maximum in
(30.1) exists, and if S pools and redistributes its resources
and then pools the finished goods produced by all the members,
then the total amount in the resulting pool of finished goods
can be as high as v(S). In short, the coalition §, if it
forms, can obtain for its members a total payoff of v(S);
in this sense, v(S) is the worth of §.*

In the interpretation in terms of monetary exchange

economies there are n + 1 consumer goods, indexed by 0, 1,

-+» n. The good indexed by 0 is called money and, unlike
the others, may appear in negative as well as positive amounts.
The space 1 consists of infinitesimal traders ds, and the
amount of any good typically available to ds will also be
infinitesimal; a typical bundie will have the form (x°, x)u(ds),

1

where xo‘e E” and x € Q. Each trader ds has a preference

*Strictly speaking, we do not have "unrestricted side pay—
ments' (see Section 29) in this interpretation, since the in—
dividual holdings of the finished good must be nonnegative.
However, since v is monotonic, negative payoffs cannot occur
in the value, nor, for that matter, in the core.
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order on the set of all such bundles. Money enters into
these preferences in a very special way; specifically,

xo + u(x, s) is a utility function for the trader ds. Iu
other words, if (xo, x) and (yo, y) are in E]' X 1, then

ds prefers (xo, x)u(ds) to (yo, y)u(ds) if and only if
xo + u(x, 8) > y0 + u(y, 8).

The consumer ds starts out with no money and with
the bundle g(s")p(ds) of goods i, ..., n. By trading, it
may be possible for him to improve his position, i.e., to
obtain commodity bundles which he prefers to his initidl
bundle. Let S be a coalition (i.e., § € ¢), and let x.:be
“such that ;{(s) ¢ Q for all s and “[Sgdp = { gady- Tfﬁ;s means
that the members of 5 cam trade ainong; ‘each o,thgra—iéd‘isﬁ:i—;
bute their initial resources—in such a way 'that after
the trade, dswill be holding ‘the bqnéie ":s(s‘)du(';s‘f;sr of goods
1, .., N, but fait:,ijli 'np money.. The utiiit;y ~t§ conSt;mQr -ds
of ‘his new biundie ‘wi'];}; be u(x(s), §)u(ds), and 50 if ve
"add" the utilities of dil consumers in S we will get a
total of j"su(i(s)z,; 5')‘5.;{(’(1&3)«:. Let ué‘éhoxj-se 3 780 thét‘ the
maximum in (30.1) is. attained; then this total is exactly

v(S).
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ﬂGeneraLl&w—addinggqp utilities of«differeq& consumers
is an‘éQbQOmicériy meéningléés~procedhne. In this case,
h&Wever{i;hg availability of money lends significance to
tha total utiiity of é. Indeed, we claim ‘that. any distri-

bution- of q;ilitiés to the consumers in S whose ‘total is

~v(S). is achievable by the coalition S. This means chat

if v is any measure with v(S) = v(S), then the coalition

S can distribuﬁeiits total bundle (0, Isgﬁh) so that the

_ utiiitj of consumer s iﬁ S. will be y{ds). Tc see this,

- define a measiire £ by

§(0) = v(U) = [ ux(s), s)u(ds)

for all U € C. ‘Then g(S) = 0, i.e., € restricted to S is a
feasible redistribution among the traders of S of the initial
totaLs—namer:O&;of money -available to this coalition. If S
diistributes i:ts money in this way, then each trader ds will

.get the bundle (§(ds), x(s)u(ds)), whose utility is
§(ds) + u(x(s), s)u(ds) = v(ds).
Thus this game satisfies the condition of "unrestricted

side payments," and the worth of each coalition S is

adequately. described by the fhumber v{S).
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The reader is referred to -[S-S;] for a discussion
of the significance of this king of monetary exchaﬁgg eco—
nomy, and its relation to the more -commonly employed Wal-

rasian barter model. (See also Section 32.) , o i
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3}. STATEMENT OF MAIN RESULTS

Throughout, the measure y and the functions u and a
will be as specified at the beginning of Sec. 30, and the
set~function v as defined in (30.1).

We shall say that u(x, 8) = o(||x||) as |x|| = =,
integrqblz in s, if for each € > 0 there is an integrable
function n on I, such that |u(x, 8)| g ¢|x|| whenever
x|l 3 n(s). If n is bounded, then this is equivalent to
saying that u(x, s) = o(jx||) as jx}] = », uniformly in s.
But in general, the two concepts are not equivalent; for
example, if n = 1, then x*/s% = o(x) integrably, but not
uniformly. The concept of integrable convergence was
introduced in [A-P] in order to deal with the question of
the existence of the maximum in expressions of the form
(30.1).

The function u will be called Borel-measurable if- it

is measurable on the product o~field # x ¢, where & is the

o—field of Borel subsets of Q.

THEOREM G. Assume that a i p—integrable,

and that

(31.1) u is Borel-measurable;
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(31.2) u(x, s) = o(|lx||]) as ||x{| =~ =, integrably

in s;
(31.3) for each fixed s, u is continuous on Q,

and for each j, au(x, s)/axj exists and

is continuous at each x ¢  for which*

xj > 0; and
(31.4) a(s) > 0 for all s.

Then v (s€e (30.1)) is. well-defined** and is in

pPNA, and,thg coré:bf‘v consists of a single

payoff vector, which .coinc¢ides with the value ov.

Theorem G will be .proved in Sec. 40.

Though it is common. enough in economics, condition
(31.4)-~total positivity of initial resources--has a certain
slightly restrictive, unintuitive flavor, and it would be
nice if we could dispense with it. Two senseés in which this
can in fact be done will now be discussed.*** The first is
to demand that there be only a finite number of different

*I.e}},whenever the two-sided partial derivative is
defined.

**].e., the maximum is attained for all S ¢ C.

**%For a third sense, see Propositioh\3342.
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utility functions for the members of I. Specifically, let
us say that u is of finite type if there is a finite set H

of functions on Q1 such that each of the functions u(:, s)
is in H. (Note that this still allows all of the initial
bundles g(s) to be different.) Then we have

PROPOSITION 31.5. Theorem G continues
to hold if (31.4) is replaced by

(31.6) u is of finite type.

Proposition 31.5 will be proved in Section 39.
The other sense in which (31.4) can be dispensed with
is illustrated by the following proposition:

PROPOSITION 31.7. Let u satisfy (31.1),
(31.2), and (31.3). Then v is well defined,

the asymptotic value of v exists, and the core

of v consists of a single payoff vector, which

coincides with the asymptotic value.

Proposition 31.7 will be proved in Section 41. The
proof depends on the 'diagonal property" discussed in Sec-
tion 19 (Part II). In fact, we will derive Proposition
31.7 from a more general proposition (Proposition 41.2),
which is stated in terms of concepts related to the diagonal

property.
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} ' Since we know that also the mixing value enjoys the

‘ diagonal property (Proposition 19.3), the question arises
whether Proposition 31.8 could not be proved for the mixing
value as well as the asymptotic value. We do not know the
answer to this question, but the reader will find it discus-
sed in Section 42, Other possibilities for extensions of

the results stated here will also be discussed in Section

42,
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: 32. THE COMPETITIVE EQUILIBRIUM

Let u, u, a, and v be as in Sec. 30. An allocation

f‘ is an integrable function x from I to Q such that

[z = [a.

A monetary competitive equilibrium (m.c.e.) is a pair

(x5, p), where x is an allocation and p ¢ 1, such that

for all s ¢ I, u(x, 8) - p+(x - a(s)) attains its max-

imum (over x ¢ Q) at x = x(s). The function on I whose

value at s is u(x(s), s) - p-(x(s) - a(s)) is called the
competitive payoff density; its indefinite integral* (w.r.t. u)

is called the gompetitive payoff distribution; and p is the

i
i
i
3
i
*
»
3
i

vector of competitive prices. (All three definitions are,

of course, with respect to a given m.c.e. (x, p).)

Intuitively, the vector p is a price vector. Thus,
p* (x(s) - a(s))u(ds) represents the amount that the player**
ds must pay in order to buy the bundle x(s)u(ds), over and
above the amount that he gets by selling his initial bundle
a(s)u(ds). This amount must be subtracted from u(x(s), s)u(ds)
in order to yield the net "income" of ds, and it is this

income that ds wishes to maximize. If p is such that when

integral of g is the measure v defined by v(S) =

3§ ; g is an integrable function on I, the in?efinite
g8M -

**Producer or trader, according to which interpreta-
tion is being used.
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all players maximize in this way, the total demand [x

°

equals the total supply Ig, then the economy is in equi-
1ibrium. Note that in the monetary interpretation, the
total excess demand for money at such a point--namely,

fP'(g - a)--also vanishes.

We shall distinguish the concept just defined from
the usual Walrasian concept of competitive équilibrium--
as used, say, in [AI]--by calling the latter a barter com-
petitive equilibrium (b.c.e.).* To relate the two con-
cepts, let us consider the monetary exchange economy in-
terpretation of our game, namely, a market in which there
are n + 1 goods 0, 1, ..., n, the O-th good being money.
A b.c.e. in such a market takes the form of a pair

0.1,

((§0, X), (po, P)), and we may assume w.l.o0.g. that p
It is then easily verified that such a pair is a b.c.e.
if and only if (x, p) is an m.c.e. and for all s, 50(8) -
p-(a(s) - x(s)). The total utility of the trader ds at

this b.c.e. is then seen to be exactly

(u(x(s), s) - p-(x(s) - a(s)))u(ds).

“*The b.c.e. will not be formally defined here; the
interested reader is referred to [A Y (for markets with a
continuum of traders) or [D5] (for %inite economies). Some
familiarity with the concept of a b.c.e. is needed in certain

parts of this section, e.g., in the proof of Proposition 32.5.

It is however not needed in most of this section, e.g., for
Propositions 32.1, 32.2, or 32.3 or their proofs. Neither is
it used in the subsequent sections of this paper.
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Note that although a b.c.e. remains a b.c.e. when the prices
are multiplied by a positive constant, this is not the case
for an m.c.e.; there the prices have already been normalized,

so to speak, by the requirement that the price of money be 1.

PROPOSITION 32.1. Let u be Borel measur-
able, and let [a > 0. Then an integrable x
maximizes [u(x(s), s)di(s) subject to [x = [a

and x(8) ¢ 0 if and only if there is a p such
that (x, p) is a monetary competitive equi-

1librium.

This is essentially the content of Theorem 5.1 of
[A-P] (cf. Proposition 36.4); it may be considered a form
of the Kuhn-Tucker theorem [K-T] in an infinite dimensional
space. The proposition says that any allocation x for which
v(1) is attained (see (30.1)) is competitive, if the ap-

propriate side payments p-(x(s) - a(s)) are made. As for
the prices p, when u is differentiable, then

pi = [3U/axi]x.x(s)

i, for all s such that 51(8) > 0 (c£. (32.11)). Thus in the
: production interpretation, pi is the marginal product of
i the i-th commodity at equilibrium, and in the market in-
! terpretation, it is the marginal utility (in both cases
g vhen there is some of the i-th commodity present at equi-
i

1ibrium).
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PROPOSITION 32.2. Assume (31.1), (31.2),

and fa > 0. Then there is an m.c.e.

Proof. The nain theorem of [A-P] asserts that under
the conditions we have assumed,* the maximum in the defini-
tion of v is attained (cf. Proposition 36.1). The result
then follows from Proposition 32.1. This completes the
proof of Proposition 32.2.

Without (31.1) and (31.2), there may be no m.c.e.;
see Section 33.

We now wish to discuss how the competitive equilibrium
is related to the core and the value. In an ordinary Wal-
rasian exchange economy** with a continuum of traders, it
is known that the core coincides with the set of (barter)
competitive allocationg*** {AI]. It is therefore reason-
able to conjecture that: a similar situation holds for

m.c.e.'s. This is. in fact the casé; indeed we have

PROPOSITION 32.3. Assume (31.1), (31.2),
(31.3), and [a > 0. Then there is a unique

(monetary) competitive payoff &istgibution,

*And even slightly weaker conditions.
**I.,e., a "market without side payments".

#*%%A competitive allocation in a barter economy is
an allocation X Tor which tﬁerejexists a price vector p
such that (x, P) is a b.c.e.
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which coincides with the unique point* in the

core of v, and so also with the asymptotic

value ov.

Remark. Note that we are not asserting that the m.c.e.
is unique. What is being asserted is that there is at least

one m.c.e., and that if (x, p) is any m.c.e., then
g(u(zs(S), 8) - pr(x(s) - a(s)))du = (ev)(S)

for all S ¢ C.

Proof. By Proposition 32.2, there is an m.c.e. (%, P).
Let v be the corresponding competitive payoff distribution.

Since x is an allocation it follows that
(32.4) v(I) = v(I).

Next, if S is any coalition, let v(S) be attained at y,

i.e.,

v(S) = £u(z(s), s)ds, gz - ;5, and y(s) 3 0 for all s.
Then by the definition of m.c.e.,

T ¥3ee Proposition 31.7.

el &
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u(x(s), 8) - p'(x(s) - a(s)) 2 u{y(s), 8) - p-(y(s) - a(s)).
Integrating this over S, we..obtain

v(8) 3 v(s) - P'£Q - 8) = v(s);

together with (32.4), this shows that v is in the core.
But by Proposition 31.7, the core contains a -unique point,
namely the asymptotic value; so the proof of Proppnsition.
32.3 1s complete. -

In the above proof, we made use of the fact fhat there

is.only orie point in‘thé core in order to est&sblish the

‘\equivalence_befdeen the core and the set of all competi-

ttve~pa§of£,distribﬁtions. Tbe“prqgf of uniqueness for
the core, in turn, is intimatgly‘bound«up with value con-
giderations and with the differentiability of u. 3ut the
equivhlence*between the core and the set of competitive
allocations is a much more genersl pheriomenon, which does
not depend on differentiability, is not directly connected
with value considerations, and in fact continues to hold
even when the cor: has many members. It is therefore of
some interest to establish this equivalence under condi-
tions that are more general than those of Proposition 32.3
even though thére is no ditect -connection betwen this and

the value.
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PROPOSITION 32.5. Assume that u is con-

tinuous in x for epch fixed s and is Borel

measurable, that v is well-defined,* and that
Ja > 0. Then the core of v coincides with

the set of (monetary) competitive payoff dis-

tripgtions.

Proof. The idea of the proof is to introduce "money"
explicitly, as in the monetary exchange interpretation of
our economy. We then get an «(n + 1)-good market whose
b.c.e.'s are in 1 - 1 correspondence with the m.c.e.'s of
the original economy, and whose core corresponds** to the
cote of v. We inay now apply the "equivalence theorem" for
barter economies (see, e.g., [AI]), according té which: the
core of such an economy coincides with the set of all barter
comﬁetitive allocations (b.c.a.'s)--i.e., allocations .assoc-
iated with some b.c.e. §ihce the core of the (n+l)-zood
barter -econoniy corresponds to the core of the original
n-good monetary economy, we may deduce the equivalence in
the original monetary economy.

“¥T.e., that for each S, the maximum in the definition
of v(S) is attained; (31.2) is a sufficient condition for
this, but it is not necessary. Incidentally, all that is
needed for this proposition is that the max in the defini-
tion of v(I) be achieved; if for the other S, v(S) is de-

fined to be the sup rather than the max, the proposition
remains true. )

**It is in establishing the correspondence between the
cores that one uses the assumption that the max in the def-
inition of v(I) is achieved.

.
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Unfortunately, we are unable to use the equivalence
theorem of [AIT for this purpose, for the following reason: §
Iﬁ the (n+l)-good barter economy, money is‘available in ;
negative as well as nonnegative qﬁantities,,whereas all i
other gbodé are available in nonnegative quantities only.
Theréfore-the space of all commodity bundles is not the

n+l 1

nonnegativeAOrthant of E° 7, but rpther E 1

X 1, where E
is the entire real line and 0 i8 the nonnegative orthant

of E®. But the equivalence theorem of»IAll is stated omly

B T T Y S

for the case in which the space of cémmodity bundles is
precisely the hoﬁngggtivé orthant.*
Fortunately, a more general form of the -equivalence :

theorem is available [Hi]; in this theorem, for each s ¢ I

there is a consumption set X(s), which is only assumed to .‘
be a convex subset of gD (rather than X(s) = q, as in '
FAI]). To describe the result, we must récall the concept

of a quasi-competitive‘a}location (in a barter economy),

due to Debreu [D6]; it is an allocation x for which there
exists a price vector p, such that for almost all s, either
x(s) is maximal in the budget set of s, or p-x(s) is the
minimum of p°x as x ranges over the consumption :set X(s).

We then have, under appropriate conditions, that™- ~

FThough we believe that the proof in [A1] would go

thiough in the case considered here without any diffi-
culty.

PR K02,
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(32.6) the core coincides with the set of

quasi-competitive allocations

A et

[Hi, Theorem 2, p. 448]. In our application, where X(s) =

gl

x § for all 8, we now show

T I T YT T r

(32.7) every quasi-competitive allocation is competitive.

Indeed, if the price of money is not 0, then p-x takes

1

arbitrarily small values in E- x Q, so the minimum cannot

be attained at all, and (32.7) follows immediately. 1If

R T e R T T WL 7 Y P T Iy WYY

the price of money is 0, then no x(s) can be maximal in
the budget set of s, because by adding some money to x(s)

one gets a more preferred* bundle while still remaining in

O S

the budget set. So

(32.8) p'x(8) = min (p-x : x ¢ el x Q)

. +
PO T T T U

for all s. Now since the price of money vanishes there

must be at least one ordinary good with a nonvanishing

price, say the good indexed by 1. If all prices are non-

1

3 negative, then it follows that p~ > 0; since Lgl - [21 > 0,

f there is an s with.gl(S) > 0, so

*Recall that (xo, x) > (Yos y) « u(x) + x0 > u(y) + Yo
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p x(s) 2 p1-5l(s) >0 = min (p'x : x¢ E1

x Q),

in contradiction to (32.8).» If at least one price is nega-
tive, then the minimum on the right side of (32.8) cannot be
attained, since the infimum 1s -=; so again (32.8) is con-
tradicted. Thus (32.7) is established, and so from (32.6)
it follows that the core coincides w._.th the set of competi-
tive allocations. As for the "appropriate conditions"
needed for Hildenbrand's theorem, these include continuity
and measurability of the preferences and a local non-
satiation condition, and are all easily verified here.
Hildenbrand's set-up also includes production sets for all
coalitions, but this can be dispensed with here; we simply
let the production sets coincide with the mnonpositive
orthant.

Summing up, we ‘have shown that Hildenbrand's result
yields the Equivalence Theorem for the barter economy cor-
responding to our original monetary economy. The remainder
of the proof can now be completed as outlined above. This
completes the proof of Proposition 32.5.

In the proofs of the theorems stated in Section 31,
the uniqueness of the core* is established via value con-
siderations, using Theorem F; strong use is thereby made
~—""FMIs is a rather loose; though convenient, method of
expression. Strictly speakinff,it is the point in the core

that is unique; the core itse as a set, is trivially
unique, in any game.
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of the "differentiability" of v--i.e., the existence of
dv¥(t, S)--along the diagonal, and this in turn depends
on the differentiability of u. Proposition 32.5 gives

us an opportunity to establish the uniqueness of the core
in a different manner, by proving the uniqueness of the :
competitive payoff distribution. As may be expected, this
too depends on the differentiability of u.

Let u satisfy (31.1) and (31.3), and let Ig > 0. Let

i e i

(x, p) be an m.c.e. From the definition of m.c.e. it then

follows that for all x ¢ 0O,

u(x(s), s) - p-x(s) 3 u(x, s) - p-x,

S a2 .

kit il

whence

(32.9) u(x, s) - u(x(s), 8) g p-(x - x(s)). i

-' ;
?; Setting x = x(s) + 6ej for a given j and letting & - O+, ?
: we .deduce
E :
, 1 j j
] g :
g . If, moreover, 5j(s) > 0, then we may let 6 - 0-, obtain- -0
3 - .
. ing the inequality opposite to (32.10); together, they ;

yield
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(32.11) [au/alex_x(s) = pj wheneVer'gj(s) > 0.

Since jgj - ng > 0, there must be an s such that 5j(s) >

o

Thus the competitive prices are uniquely determined. But
then there can be at most one competitive payoff density,

namely

(32.12) max (u(x, s) - p-(x - a(s)),

and so at most one competitive payoff distribution.

If, moreover, u also satisfies (31.2), then by Prop-
osition 32.2, there is an m.c.e., i.e., the max in (32.12)
is attained. Thus we have provided an alternative proof,
which does not depend on the value concept, of all but the
last clause of Proposition 32.3.

Theorem F provides a direct connection between the
value and the core, and what we have just said provides
the corresponding connection between the m.c.e. and the
core. To complete the triangle, we now demonstrate directly
how the value is connected with the m.c.e., without con-
sidering the core. Unlike the previous demonstrationms,
though, this demonstration will have a heuristic rather

than a strictly rigorous nature.*

*Though there were gaps in the previous demonstrations,
they are relatively easily filled in. The gaps in the pre-
sent argument are more serious.

.
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;? If x is a measurable function from I to Q, we will
find it convenient slightly to abuse our notation by writ-

ing u(x) for the function on I whose value at s is

u(ﬁ(s) ’ s).
Assume that it has been established that v ¢ pNA.

If £ is an ideal set (see Part II1), it then seems reason-

able to suppose that

Assuming (32.13), let us, for given S ¢ C and t ¢ (0,1),

calculate the expression

vk (tx + ) - vF(tx.)
dv¥(t, S) = limfdo L f L.

From (32.13) it follows that
; ! V*(tXI) = tv(I) = Ltu(g),

where x is the allocation at which v(I) is achieved. Now

; i let v*(txy + rxg) be achieved at y. Then for sufficiently

small r, we have

(32.13) v*(f) = max{ju(g)f : Jgf = &gf and x(s) 3 0 for all s}.

.
£ 928 $h st Bt Wi«




s kol

k.

p

i
;

e TR e e S

DRl oan i a0 sl it T
‘

-36-

(32.14) vk(txy + mxp) = [(u(y) - u@)(txg + rxg) + v.sfu(zt)
g [lp- (g - DI (txp + rxg) + ofu(x)
=p-f(a - x)(txg + 7xg) + 'rgu(;t)
= tp- (g - x) + -rp-£(5 - %+ *i“@é)
=0 + T£(u(§) - pi(x - 8)),

and hence

(32.15) av*(t, S) g £(uQc) - p(x - 8)).

We can, however, say more, namely that equality holds in
(32.15). To show this, it is only necessary to point to

a y such that

(32.16) [(txgy + vxg)y = f(txg + rxg)a and y(s) 3 O for all s,

for which the dinequality in (32.14) becomes an equality up
to a term that is o(r). Now it is always possible to find
a y satisfying (32.16) which will have the property that
ij(s) = 0 whenever §j(s)~= 0; and moreover, such that
zj(S)‘éfggis) + Kj(S)T for 41l s, where Kj(s) is a constant
that depends on j and on whether s is or is not in S, but
otherwtse does not depend on s or on r. From this and

(32:11) it follows that equality holds in (32.14), and
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hence in (32.15). But .then. it follows from Theorem E
that the value 9v coincides with the competitive payoff
distribution.

The two major gaps in this argument are the unproven
assumptions that v ¢ pNA and that v* is given by (32.13).
Given v ¢ pNA, (32.13) is probably not too hard to prove,
e.g. by the theorems of Section 25. But to prove v € pNA,
say from the assumptions of Theorem G, is a serious bit
of work. Indeed, it is precisely this that constitutes
the most difficult part of the proof of Theorem G, and it
will require every bit of Sections 35 through 40 before it
is dome.

We repeat, though, that our proof of Theorem G will
not depend on the above argument (nor will it depend ex-
plicitly on the m.c.e. at all); rather, it will use Theorem
F, i.e., it will depend on core considerations only. The

above arguments were only given to shed light on the rela-

tions between core, value, and. competitive equilibrium,
from several different viewpoints. From the point of view
of this paper, the m.c.e. is strictly speaking not needed
at all; and if it is introduced, it is most directly related o= f%
to the core and the value via the first proof of Proposition J

32:3 given above.

’
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33. EXAMPLES

In all the numbered examples of this section,* I will
be the unit interval [0,1], ¢ the Borel o-field B, and u

Lebesque measure A.

A. The Case n = 1

In the production interpretation, n = 1 means that
the finished good is produced from only one kind of raw
material, though the efficiency of production of the var-
ious traders ds--i.e., the production functions u(-,s)u (ds)--
may be different.** In the ekchange interpretation, we are
dealing with a market in which only one kind of good is
being bought and sold (for money), the demand for (and
supply of) this one good being created by the different
utility functions u(:,s)u(ds) that the traders ds have for
the good. Conceptually and computationally, this case is
somewhat easier to deal with than the one of general n.
Yet it is far from trivial, and its analysis involves most

of the basic ideas that are met with in the general case.

Example 33.1. Letn =1, and for all s, let

Fxamples 33.1, 33.3, 33.6, 33.9, 33.11, 33,12, 33.13.

**It may even happen that one trader produces more
efficiently than another at a certain level, whereas the
other produces more efficiently than the first at a dif-
ferent level.
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(see Fig. 1) and
a(s) = 1/32.

This market satisfies (31.1), (31.2), (31.3), and (31.4).
Therefore, from Theorem G and Proposition 32.3, it follows
that v ¢ pNA, the core of v and the m.c.e. are unique, and
both coincide with the value. It is easiest to compute the
m.c.e., making use of (32.10) and (32.11). The idea of

the computation is that the higher the price p is, the
smaller will be the total demand for the good x; we must
find a price at which the total demand exactly matches the
total supply Ig = 1/32. Suppose then that the price is p;
let x(s)u(ds) be the demand of ds. Then by (32.10), if

x() > 0, we have

1

p = [2u/dx] -
x(s s

x~x(s) ~

hence

x(s) =‘Z;1>7 -s and u(x(s), s) = 213- V5.

By (32.11), if x(s) = 0, then
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i - [au/ax]x_o < P;

hence,

1
- 8 Oo
w o F

Thus, we conclude that in any case

x(s) = max (0, =& - s).
ép
Hence,
1
2:1Z
31‘2-=j'a=I5= i (—-1-2--s)ds
4p
1 1
W oW
= E sds = [7TJ - -JLE.
0 32p

Hence p = 1, and it follows that
1 ¥1 11_213/2_1

V(D) = [uGxls), s)ds = {(7 - VB)as = 3k - 3P = 4

The competitive payoff density is

[u(x(s), 8) -~ p-x(s)] + p-a(s);

when s g~%-this consists simply of p-a(s) = gén When
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8 g %, we ‘have in addition to this amount, the amount
PN R RO T TRV VO

which ranges from 0 at s = %-to %-at s = 0. The situation
is pictured in Fig. 2 (solid lines). The slopes of the
u-curves at x = x(s) (dashed line in Fig. 1) are all equal
to the competitive price of 1 when x(s) > 0, but when
x(s) = 0 the tangent .at 0 may have a slope smaller thanm 1.
Note that the competitive payoff density may be thougnt
of as consisting of two parts, namely p-a(s) and“qu(s), s) -
p'x(s). In the production interpretation these two parts
may be thought of as follows: the first part is compensa-=

tion to ds in his role as supplier, and is always diyided

among the players in proportion* to a{s). The second part

is attributable to his role as producér, i.e., to his u-

function u(-,s); and does not depend in any way on his

initial bundle** a(s).

*¥This neeus no. interpretation when n = 1. When n > 1,
it means in proportion to p-a(s). However, even when n > 1,
if one trader's initial bundYe density is exactly twice
that of another~-in the vecto: ial sense-=-then that part of
his payoff density attributable to his role as a supplier
will also be twice that of the other trader,

*%It is interesting to remark that this division into
two parts with the above properties is far from trivial if
one looks at the payoff from the value or core point of
view.
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1f, for example, we redefine the initial bundle dis-
tribution here by

0, 0gsg+
5 F<sgl,

then our calculation will remain essentially unchanged,
the only difference occurring in the payoff density.
This is illustrated by the dashed lines in Fig. 2. The
players ds for s ¢ [0,%] will act as producers, and will
obtain a payoff «density of %-+ s - 4/s; they will obtain
nothing as suppliers, since they have no initial bundles.
For s ¢ [%3 %ﬂ, the players have no initial supplies,
neither are fhey sufficiently efficient to produce; there-
fore, their payoff is 0. The remaining players (those
between<% and 1) get a payoff density of 1/16, in propor-
tion to éheir initial holdings; but they are not sufficiently
efficient as producers to act in this capacity. One might
say that they sell their initial holdings to the efficient
producers between 0 and'%-in return for a promise of man-
ufactured goods.

This second version of the example does not satisfy
(31.4), and therefore we cannot deduce from Theorem G that

v ¢ pNA. However, we have

PROPOSITION 33.2. In Theorem G, (31.4)

may be replaced by the assumption that n = 1.

p—

T mtomn

il
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This proposition will be proved in Section 40, together*
with Theorem G. Readers who have followed the preceding
example will realize that even when n = 1, the -assumption
a(s) > 0 is by no means of a trivial nature;** players for
whom g(s) = 0 may still have considerable significance as
producers (in the production interprefation), even Ehbugh
they supply none of the initial good. Thus Proposition

33.2 is by no means an easy consequence of Theorem G.

B. The Finite Type Case

Suppose that u satisfies (31.1), (31.2), and (31.3),
and moreover it is of finite tyvpe; that is, there are fi-
nitely many functions fl’ ceey fk\on Q such that each of
the functions u(-,s) is one of the fi‘ Define a k-dinen-

sional vector M of measures on I by
ny(8) = uis : u(-, s) = £,
and -an n-dimensional vector ¢ of measures on I by

¢(s) = [g

FHore precisely, a common generelization (Proposition
40.26) of Theorem G: and Froposition 33.2 will be proved.

**As it would be (because of n = 1) in most discus-

3 sions of a barter economy. When money is jatroduced ex-

‘ S plicitly, a monetary economy with n = 1 becomés a barter
F ) economy with n = 2 (cf. the proof of Prcposition 32.5),
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let v = (n, ¢). Then v is a function* of the n + k dimen-

sional vector v, say
v = gov,

Let us calcualte g in a specific example.

Ezample 33.3. Letn = 1 and for all s, let

ux, s) =/x+1-1

and

2(s) = 8s.

In thigicaée, both 1 (which = X) and ¢ are one-dimensional,
so v = {n, ¢) i two-dimensional. The range R of v is
.dépicted in Fig. 3;rnote-that it is not isymmetrie around

the diagonal, but rather (as always) arcund the center of

the diagonal. It may be seen that v = gev, where

» 8y &) =yl +1 - 1 = FEFD - 7.

= |
b ) ~*Tot & detailed discussion, ‘see Section 39, in par-
. ticular formulas (39.7) and (39:18).

. 3 |
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We would now like to apply Theorem B to deduce* that v ¢ pNA
and to obtain the value ¢v. Unfortunately, this is impos-
sible, Lecause the conditions of Theorem B fail; g is not
continuously differentiable on the range R. Indeed, we

have

(33.4) dgfaz = %-Jy?ly +z).

If we let (y, z) ~» 0 along the diagonal, then 3g/d3z ~ 1/2/Z,
whereas if we let (y, z) - 0 aloﬁg the bottom boundary of

R, then 3g/3z ~ %n Hence, 3g/3z cannot be extended to all
of R so that it will be continuous at O.

Though Theorem B is not applicable, Proposition 9.17
is, and we apply it to deduce that v ¢ pNA. To calculate
the value ¢v, we would like to use the ''diagonal formula"
(3.2). Though we have not heretofore proved this under
the conditions of Proposttibn»9,17,‘if‘doés in fact hold

under those conditions.,*¥ -USiﬁg.(33.d$\and:

~¥OF course we krow from Proposition 31.5 that v ¢ pNA;
what we are investigating here 1s whether a simple proof
can be obtained for this very simple gspecial case. °

*%Probubly the easiest way to establish this at this
stage of the game is to use Theorem E. If one wants to
restrict oneself to: mcre elementary methods, it is not
difficult to dexlse a proof using Praposition 9.7, and
the fact that fop gatisfies the ‘conditions of Theorem B.
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we thus obtain

1 1
(33.5) @) ©) = n(®)[F(e, t)de + c()[F(e, ey

- <—Z§2- - Dn(s) + $ ((s).
In the production interpretation, the first and second terms
may be considered compensation to the members of S in their
roles as producers and suppliers respectively (cf. the dis-
cussion of Exampie 33.1). As we shall see in Section 39,
gev satisfies the conditions of Proposition 9.17 whenever
u is .of finite type, and so the value formula applies.
This implies a decomposition of ¢v into a term involving
n only (production) and a term involving ¢ only (supply),
so that for the finite type case we have a derivation of
this phenomenon from value considerations as well.

In this exaniple, v(S) is always achieved by x(s) = ((5);

1. Hence in the

™
W

in particular, v(I) is achieved by x(s)
m.c.e., we have

1

1 ’ 3
m]x-l 2T ” :

p= {au/§3lx,1 = |

Hence, for all s, the competitive payoff density is given

by ‘ 3

ol o
ATy

»
m&z}'mm;&‘u‘km_' o
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u(x(s), s) - p-(x(s) - &a(s)) =Jx(s) +1 -1 -

hence the competitive payoff distribution is given by (33.5),
which is as it should be. 1In the general finite type case
as well, it may be seen by direct computations that the
diagonal formula for the value yields the competitive pay-
off,distribufions (cf. Section 39, especially the material
following (39.7)).

The main point of Example 33.3 was. to show that Theorem
B is not sufficient to deal even with the simplest* finite
type cases, but that Proposition 9.17 is needed. In Sec-
tion 39 we shall see that Proposition 9.17 is indeed suf-

ficient to cover the general finite type case.

C. Differentiability

To show that condition (31.3) cannot be dispensed

with; consider the following market:

Example 33.6. Let n =1, and for all s, let

"we used /x ¥ I - 1 rather than simply /X in order
tn show that even when u is differentiable on the n-dimen-
sional nonnegative orthant, g may not be differentiable
on the ntk-dimensional orthant, and Theorem B may not be
applicable.
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; x, forxgl
u(x, s) "\ -
(v¥, forx 31,

and

w
~
N
-
th
Q
'1
»
A
I\
-

1/2, for s > 3.

The function u(x, s) is graphed in Fig. 4. It is not dif-
ferentiable at 1; the left derivative is 1, and the right
derivative is %u Thus we define x(s) =1, then (x, p) is
an m.c.e. wbenever‘% < p £ 1, because the line through

(i, 1) with slope p supports the graph of u for those
values of p. The competitive payoff density correspond-

ing to a given value of p will therefore be

. i 1
{1 +5p, forsg

u(z(s), 5) - prx(s) -2 =) ] . H
41 - -2- P, for s > 2_.

The .competitive payoff distribution is therefore givern by
(33.7) £.(S) = (1 +3p)A (s N [0,3]) + (1 - dp)aqs A 3,1
=4 cp 7P s7 - pis 25007

It follows from Proposition 32.5 that the core of the market
is the set of all §p, where p rarnges from-% to 1. In par-
ticular, it consists of more than omne point, so that the
conclusion of Theorem G (and also that of Proposition 31.7)

fails.
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u(x,s)

(1, 1)

Fig.5 — The range of (X,{)in Example 33.6
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We can also calculate the core directly., Let ¢(5) =
Lg; the range of (A, () is depicted in Fig. 5. It may be
e ]
verified that

S (33.8) v = min (¢, VCX).

Since %{c + 1) 2 /CX and ¢(I) = A(I) = 1, it follows that

the core of v contains all convex combinations of the form

t¢ + (1 - t)r, with %?g t ¢ 1; these are precisely the §p
of (33.7).
The reader will note the similarity between formulas

(33.8) and (3.4); in neither case does v belong to pNA.

Indeed, the proof that the v of (33.8) does not belong to
pNA can be carried out along the same linés as the proof
of Example 5.8 éppearinghat the end of Section 27. Réther
than doing this in detail, though, we will present ariother
nondifferentiable market more directly related to (3.4)

and Example 5.8.

Example 33.9. Define a function f on the nonnegative

half-line by

x, for0gxg1

(
12 -1 for 1 g x
x’

f(x) =

(see Fig. 6). Let n = 2, and for all s, let
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ulx, s) = £(min(x!, x%) + (x! + x2)/10))

and

s(%, H for0gsgy
a(s) = l(%, %9 for % <sgl.

This is often called the ''glove market"; it has the follow-
ing (exchange) interpretation:* The commodities 1 and 2
are left and right gloves respectively. Individual gloves
are next to useless, being useable only for the material

in them (this accouiits for the term (x1 + xz)/lo, which

is needed so that u be strictly increasing). Pairs of
gloves; however, can be used as gloves. The utility for
pairs of gloves and for wmaterial is bounded, being governed
by the function f (this is needed to ensure that (31.2) is

obeyed).

(1, 1).

(1

It is easy to see that v(I) is achieved for x(s)

The prices p must satisfy

1 2

2
pl 3 0.1, p% 3 0.1, p! + p? = 1.2;
otherwise, however, they are arbitrary. In other words, p
may be any convex combination of (1.1, 0.1) and (0.1, 1.1).
The set of all competitive payoff distributions--i.e., the

core--may be easily calculated from this. Alternatively

~ *CE. [5-53], pp. 342-347.




we may proceed as follows: Define ¢(S) = ££° Then
(33.10) v =min(cl, B+ L+ D,

and it is easily verified from this that any convex combin-

ation of gl +'fb (gl + gz) and gz +~%&,(g1 + gz) is in the

core of v. But if we set
A,(S) = a(s n [0, &)
1 » 7
Ao(S) =2 (S N E 11)
2 T ’
then from (33.10) it follows that
veggt+ D+t - = et ng -y,

and hence it follows immediately from Example 5.8 that
v ¢ pNA.

D. Achievement of the Max in the Definition of v

If condition (31.2) is not obeyed, the max in the
definition of v(S) may not be achieved, even though the
sup may be finite. The following example of this is from
[A -P]:

Example 33.11. Let n = 1, and for all s, let




u(x, 8) = xs

and

a(s) = 1.

In this case, the integral appearing in the definition of
v(I) is fqg(s)ds, and this :wust be maximized subject to
[x = 1; the supremum in this case is 1, but it is not
achieved.

Since v(I) is not achieved, it follows from Proposi-
tion 32.1 that this economy has no m.c.e. Therefore, one
cannot hope to extend Proposition 32.3, according to which
the core, value, and competitive payoff distributions all
coincide, to this situation. But possibly an extension of
Theorem G could be proved, i.e., maybe we could show that
if in the definition (31.1) of v we replace max by sup,
then the core would consist of a single point, v would be
in pNA, and the value gv would coincide with the single
point in the core.

Under this new definition of v, the v for Example
33.11 is given by*

" v(S) = 1 (S) (ess. sup. S).

¥ess, sup. S is the essential supremum of S, i.e., the
smallest number a with the property that A (S n [a, 1]) = 0.
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The core of this v consists of a single point, namely A.
Indeed, it is easy to see that A is in the core. Suppose
that the core also contains another point, say v. Since
v # X, there is a set S such that v(S) < A(S); let k be
suffiéiently large so that 1/k < A(S) - v(S). Divide I
into k disjoint sets each of which has essential supremum
1. For at least one of these sets--let us call it T--we

must have

v(T) g v(I)/k = 1/k.

Since v is nonnegative (because v(S) > v(S)), it follows

that
v(B UT) gv(S) + v(T) <A(S);
on the other hand
v(SUT) 2 v(SUT) = A (SUT) ess.sup. (SUT) > A(S) ess.sup. T = A (S).
This contradiction proves that the core indeed contains
only the point A
Unfortunately, though, v is not in pNA; in fact, it

is not even in AC. To see this, let us define an arbitrary

set function v to be continuous at S, whére S ¢ ¢, if for

all nondecreasing sequences {Si} such that us; = s, and all

nonincreasing sequences (Si} such that NS; = S, we have
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1lim v(Si) = v(S).

It is easily verified that every member of AC is continuous
at every S ¢ C. But the v of Example 33.11 is almost never*
continuous. For example, if S = [0, %ﬂ and S, = [0, %ﬂ U

[1 - %, 1], then {Si] is a monotone nonincreasing sequence

and nsi = S but
lim V(Si) - %-> %-- v(S).

Therefore, v ¢ AC and a fortiori v ¢ pNA, and so Theorem G
cannot be generalized to this situation.

There is, however, still some hope that Proposition
31.7 might be generalizable, i.e., that we might be able
to show that the core is unique, and that its asymptotic
value exists and equals the unique point in the core. In
the case of Example 33.11, this is indeed the case. We
have already seen that the core consists of the unique
point A.. To see that the asymptotic value exists and
equals A, consider a partition of I into a large number
of small setsg** S1s <0 Sk+ In a random ordering of the
Si’ there will with high probability be an Si near the
— ¥It is continuous only at those S for which ess. sup.
S =0 (i.e., A\(S) = 0) or ess. sup. S =1

**For definiteness one can think of intervals of equal

length, but the argument goes through perfectly well with-
out any such assumption.
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beginning of the ordering whose essential supremum is close

to 1. This means that with high probability most of the 84

will be contributing approximately A(Si) to v(S), and our

assertion about the asymptotic value follows from this.

Of course the argument as given here is heuristic, but

the reader may convince himself that it is easily made

precise. '
Unfortunately, our relatively good fortune in being

able to generalize Proposition 31.7 in the case of Example ‘

33.11 does not extend to any appreciable class of games.

We now bring an example of an economy satisfying all our

assumptions except (31.2), in which the core of v contains

many points.*

Example 33.12. Let n = 2, let

S

1/ 1
(xl + x2) - ((xl) + (xz) /s)s when s ¢ (0, 1),
u(x, S) = 1 2
X"+ x" when s =0 ors =1,
and let
o (1/2, 3/2) when s ¢ [0, 31,
a (3/2, 1/2) when s ¢ (%, 1].

Here, the exact form of u is of no importance; what is
needed is only that for fixed s, u be increasing, dif-

ferentiable, and homogeneous of degree 1 in x, that for

~ *when the max in (30.1) is replaced by sup.

PR SA——




8 e (0, 1) u be decreasing in s for fixed x, and that
1 .2
lims*o u(x, s) = min (x*, x%).

The form of u at s = 0 and at s = 1 is of no importance.

Define a vector measure ¢ by
C(S) = £3.
s Then,**

min(gl(s), gz(S)), when ess. inf. S = 0
vEs) = u(¢(8), ess. inf. S), when ess. inf. S > 0.

From this it follows that gl, gz, and any convex combina
tion of gl and gz are in the core of v, aad so the core
contains more tﬁén one point. Therefore without (31.2)
or at least some condition that guarantees that v(I) is
attained, there is no hope for generalizing Proposition
31.7 either.

Proposition 31.5 cannot be extended either. Rather

than describing the example in detail, we will indicate

it by means of a figure.

‘ *ess. inf. S 1s the essential infimum of S; it is
4 defined to be the largest a such that A (S N {0, a]) = ¢




-62-

Example 33.13. Let n = 2, and let

2

1 + x".

f(x) = min(xl, xz) + x

For all s, u(x) = u(x, s) is defined to be f(x) when x 1is
not in the interior of the central region C in Fig. 7,
while in the interior of C it is defined so that it is non-
negative, differentiable, increasing, and g f(x). The
initial bundle g is defined by

oy - @123/, when s e 10, 3,
ats (3/2, 1/2), when s ¢ C%, 1].

The smallest concave function that is  u(x) is f(x).
Readers familiar with the methods of [A-P] (compare also
Proposition 39.3) will be able to deduce without difficulty
that v = foc, where ¢ is given by ((S) = £5; this may also
be seen directly via Lyapunov's theorem [L]. In any case
we see that the core of v contains‘2g1 + gz, gl + 2g2, and
all convex combinations of these two measures.

What happens if we require (instead of (31.2)) that
u(°,s) be: concave for each fixed s? If u is not required

to be of finite type, then this does not hélp; indeed,
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Fig.7 — The region C in Example 33.13
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the u of Example 33.12 has this property.* If u is of
finite type, then we are in a situation where all the

v(S) are attained in spite of the fact that (31.2) does
not hold. This situation will be discussed further in

Section 42.

*It 1s even strictly concave.
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34. DISCUSSION OF THE LITERATURE

The fact that in a barter economy with a continuum
of traders, the core coincides with the set of all competi-
tive allocations has been discussed extensively in the lit-
erature; see, for example, [Al’ C, Hi, V]. The same prin-
ciple, in a different form, is embodied in the theorem of
[D-Scal; there it is proved that under appropriate condi-
tions, the core of an n-person barter economy "tends', in
a certain sense, to the set of all competitive allocations
as n -~ », To distinguish these two kinds of theorems, let
us call the former a continuous theorem, the latter an

asymptotic theorem.

3 Monetary economies with finitely many agents* were

4 introduced in [Shu]. They were subsequently studied by

b Shapley and Shubik in a number of papers [e.g., §-81, §-S,,
S-S5, S5, Sgl. Aside from the intrinsic interest of such
economies, they are interesting as special cases of the

- more general Walrasian barter economies;** indeed, in a
nifiber of instances, results first obtained for monetary

5 economies were subsequently generalized to barter economies.

e use this term to mean either "trader" or "producer',

E according to the interpretation. Monetary economies with

~ : finitely many agents are defined in a manner entirely analo-
gous to the continuous monetary economies defined in this paper.

**Monetary economies are easier to deal with than barter
economies because they can be modelled as games with side
payments--i.e., with a numerical characteristic function--
which barter economies in general cannot. Compare the end
of Section 29, also [5-54], p. 808.
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The problem studied in this paper from a '"continuous'
viewpoint was studied in [Sg] from an "asymptotic" view-
point. Specifically, consider a monetary economy with a
fixed finite number m of types of agents, where unlike here,
the type of an agent is determined both by his initial bundle
and his utility* function. Let there be k agents of each
type. Assume that the utility function of each agent is
concave and differentiable (in the sense of (31.3)). Then
as k - », the Shapley value of each trader tends, uniformly,
to what he would get under an m.c.e.

This theorem can be compared and .contrasted with our
results in a number of respects. The most obvious difference
is, of course, the fact that ours are continuous theorems,
whereas that of [88] is an "asymptotic" one. The comparison
in this case turns out to be typical of similar comparisons
between continuous and asymptotic theorems in other cases.

First of all, continuous theorems are usually
"cleaner" in their statement: they assert equality, where-
as asymptotic theorems assert only that a certain limiting
relation holds. This is exactly the situation here. To
some extent, of course, the difference is illusory; in the
continuous result, the limit notion is often built into
the definition of the objects about ‘which one is asserting
equalities. Let us, for example, compare the main theorem

of [88] with Proposition 31.7: in the former, one considers

*We shall use this term to mean utility funcétion in the

exchange interpretation, production function in the produc-
tion interpretation.
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the 1limit of values of a certain sequence of finite econ-

omies; in the latter, one considers immediately a contin-

uous economy, but defines its value via a sequence of values
{3 {Q? of finite games. One may avoid such a process by using the
| "axiomatic'" value, as in Theorem G; nevertheless, the axio-

matic value appearing there does, in fact, equal the asympto-
tic value. The core notion is less directly related to
finite games; but even this could easily be defined asympto-

~; tically. One must remember also that the whole notion of

' a game with a continuum of players is intuitively appealing

only in the sense that it somehow approximates a large finite

% game :hﬂ a sense, therefore, the asymptotic approach is

more direct. Thus we may sum up by saying that here, as

usual in such situations, the -continuous approach yields
cleaner results, but is somewhat more sophisticated, con-
ceptually as well as in its use of mathematical tools.

A more important difference, perhaps, is that asympto-
tic theorems usually require far stronger assumptions than
continuous theorems. Outstanding among such assumptions--
here as in other cases--is that the number of types of
traders is a fixed finite number. Concavity (or quasi-
concavity) of preferences is also often required in asymp-

totic theorems, but not in continuous ones, and this is the

case here as well. There is one respect in which the asymp-
totic result of [Sg] assumes less than we do here, and that

is in the behaviour of u; we assume that u is increasing

e e Al -
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and that u(x) = o(lix||) as ||xl| - =, whereas neither assump~
tion is needed in [Sg]. However if, as in [Sgl, we assume
concavity and finite type, then we might be able to dispense
with these two assumptions* on u.

Finally, it may be remarked that the asymptotic results
imply a framework within which the manner and rate of con-
vergence can be discussed. The continuous formulation, by

its nature, precludes such considerations.

*Cf. the end of Section 42.

ad b
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35. THE SPACE Uy

The proof of Theorem G will proceed as follows: First
we shall prove Proposition 31.5, which assumes that u is of
finite type. To go from this to Theorem G, we shall approxi-
mate to general u's by u's of finite type. Now each u may
be viewed as a family of functions u(:,s) on 0. We shall
say that two u's are close, if roughly speaking, they are
close for all but a small set of s's. But for this one
needs a metric on the space of functions on Q of which the
functions u(.,s) are typical. In this section, we shall
define such a metric, use it to define precisely the above-
mentioned notion of closeness between two u's, and finally,
prove that any u can then be approximated by a u of finite
type.

We shall assume w.l.o.g. that u(I) = 1. For x ¢ Q,
we shall write £x to mean z?gl xi.

Let Gb denote the set of all real-valued functions

f on  that are continuous, are nondecreasing, vanish at

0, and satisfy

(35.1) f(x) = o(Zx) as Ix - =.

Let ¥ denote the set of all f in 3, that are increasing

(rather than just nondecreasing) and
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(35.2) have continuous partial derivatives fj(x) =
af/axj at each x ¢ 0 for which xJ > 0.

Note that (35.1) is equivalent to the condition

(35.3) £(x) = o()x|)) as |x|| - =,
since
(35.4) Lex g x5 2x

for all x € Q.
Let & be §, or 31. If 4 is the linear span of ¥ (i.e.,

the set of all finite linear combinations of members of 3),

3 1 then we impose a norm on 4 by

lgll = sup___ lg(x)|/(1L + £x);

Xeq

that this norm is finite follows from (35.1). This norm
induces a metric and hence a topology on &, and hence on

F.
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PROPOSITION 35.5. 31 has a denumerable

dense subset.

Proof. Let ' denote the one—point compactification
of ), which is obtained from .3 by adding a point that we
shall call ». If f ¢ §,, then the function £(x)/(1 + zx)
can be extended in a natural way from .3 to Q' by defining
it to be 0 at »; it will then be continuous on all of '.
Let 3i be the set of all functions f' on @', such that

f'(») = 0 and for some f ¢ 3, we have

£'(x) = £(x)/(1 + £x)

for all x € Q. 31 is in 1-1 correspondence with &F! under

1

the correspondence

£'(x) « £(x)/(1 + £x).
Now Gi is a subspace of the space C(ii') of all continuous
functions on Q'; if we impose the uniform convergence
metric on C(Q'), it then follows from the compactness of
Q' and the Stone-Weierstrass theorem that C(1') has a

denumerable dense subset. But since it is metric, it
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follows that it has a denumerable basis; hence also 3i

has a denumerable basis, in the uniform convergence top-—
ology. Now the above 1-1 correspondence takes the uniform
convergence topology on Ji onto the norm topology on 31
that we have defined previously; hence, 3 has a denumerable
basis in that topology, and so also a denumerable dense
subset. This completes the proof of Proposition 35.5.

.Let ¥ be 80 or 31, & its linear span. We remark that
from the compactness of ' and from the fact that g(x) =
o(zx) for all g ¢ &, it follows that the sup in the defini-
tion of |g|| is attained, so that we may write

gl = max__ |g(x)|/(1 + £x).

Xeqn
Let be the space of all functions u on Q ; I that
satisfy (31.1) and (31.2), and such that u(-, s) is non-—
decreasing and continuous on () and vanishes at 0. Let
U be the space of all u € U, satisfying (31.3), and such
that u(-, s) is increasing for each fixed s. Note that
if u ¢ Uy then u(:, s) ¢ ¥ where i = 0 or 1.
Let u ¢ Uy For s ¢ I, we write ug for the function

on Q whose value at x is u(x, s). For & > 0, a $—approxima—

tion to u is defined to be a mémber & of uo such that
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"ﬁs - us“ < & for all s except possibly a set of u-measure

at most &, in which

G (x) = JEx.

PROPOSITION 35.6. For every & > 0 and

ue ul, there is a G € ul that is a 66—

approximation to u and is of finite type.*

Proof. Let {fl, f2’ ...} be a denumerable dense
subset of ¥ (Proposition 35.5). Let & > 0 be given.

For each s in I, u € F;; let i(s) be the first i such that
hag — fi(s)" s 6.

It may be seen that i is Borel measurable. For each k,

define uk € ul by

?i(s)(x): if i(s) < k,

uk =
S

JEX, otherwise.

T *See Section 31.




Let
Sy = {seI: i(s) =1}.
Clearly, U;-l Si = I, and hence for k sufficiently large,

w(I\WE, S,¥ g 65

for such k, uk is a 6-approximation to u of finite type.
This completes the proof of Proposition 35.6.

T e e e
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36. FURTHER PREPARATIONS

In this section we shall introduce some notation and
quote some results from [A-P]* that will be used thrbﬁgh-
out the sequel. The most important of these results give
sufficient conditions for the attainability of the max in
expressions of the form (30.1), and necessary and suffi-
cient conditions for a specific measurable x actually to
attain this max.

Let u be a Borel-measurable function on Q x I. If
x is a p—integrable function from I to g, we will abuse

our notation by writing u(g) for the function on I whose

value at s is u(x(s), s). For all a € 0 and § € ¢, write
us(a) = max {jsu(g) : Is§ = a, x(s) e q for all s}.

We shall say that us(a) is attained at x if x is an in-

tegrable function from I to . such that js§ = a and

Jsu(z) = us(a)u

PROPOSITION 36.1. Let u € %, Then for

all S and a, us(a)~exists, i.e., the max is

attained and is finite.

~¥In éiting these results, the more general hypothesis
of upper-semicontinuity in [A-P] has been replaced by the
present assumption of continuity.
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This is essentially the main theorem of [A-P]. Note
that -

v(s) = us(fsg);

Next, we explain the concept of concavification.

Let f be a nonnegative real-valued functiénm on . and let

F={(v, x) € E1 x @ 0<vg £(x)}.

Let F* be the convex hull of F. If there is & function f*

on O such that

F* = {(v, x) ¢ Elxq:0gv < f*(x)},

then f is said to be spannable, and f* is called the con—
cavicétion* of £f; clearly f* is uniqué and concave. If

f is concave, then f is spannable and f* = f,

PROPOSITION 36.2. 1If £ ¢ 8, then f is -

spannable and f* is nondecreasing and con—~

tinuous.

*In this paper the word 'concavification" applies
only to spannable functions. This coincides with the usage
of [A-P]; it differs slightly from that of [S—SI] where

concavification is defined in terms of the closure of the
convex hull. -
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This is essentially Proposition 3.1 of [A-P].
" If ue uo’ then u, € F, for all s, and so q; is

defined. Define a function u* on o x I by

u*(x, s) = us*(x).

Then u*s = us*, and so we will henceforth write u; for

their joint value.

PROPOSITION 36.3. Let u € %,» Then

u* € uo, and for all S and a,

u*s(a) = ug(a).

In particular, it follows that ug is concave

‘On Qo

This is an immediate consequence of [A—Pl,:spéé—
ifically of Lemma 3.3 aid 3.5 and Propositions 3.1 and
4.1 6f\thatipa§er{ From the concavity of'ué and u*s,' ug
if follows that u*S - us*; 8o we will henceforth write ‘

in

u§ for their joint value. . : ‘;::




PROFOSITION 36.4. Letu € %, let a € 0

be »:0, let S ¢ & and let x be a measurable

function from I to 0. Then a necessary and

sufficient condition for gs(g) to be attained

at x, i.e., for

Is“(ﬁ) = “s(a) and Isi = a,

is that there be a p € u such that

u(x, 8) — u(x(s), s) < p-(x - x(s))

for all x € < and almost all s e S. Ifu

is increasing for each fixed s, then p € Q

(f.e., p » 0) may be replaced by p > 0.

Ifue Uy » then for i = 1, ..., n,

pi - [6“/3){1]*.}:(8)

for almost all s such that'gi(s) > 0.

This is essentially Proposition 5.1 of [A—B]:
We close this section with a statement of the Measur—

able Choice Theorem.
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PROPOSITION 36.5. Let (X, %) be a stan—

dard measurable space, i.e., one that is iso—

morphic to ([0, 1], &). Let 4 be a subset of

I x X that is measurable in the product o—-field

C x %, and whose projection on I is I. Then

there is a measurable function g : I - X such

that for almost all s, (g(s), s) ¢ 4.

This theorem is due to von Neumann [VN, p. 448,
Lemma 5]. Von Neumann's proof uses Assumption 2.1, namely
that (I, ¢) is also standard, but the theorem remains

true without this assumption; see [A6].
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The main goal of this section is Lemma 37.8, in which
it is shown that for given u, there is a fixed integrable
function 5 that bounds all coordinates of all functions y

that maximize fig(b), whenever S is not too small, b is bounded

- away from O and », and U is a sufficiently good 6-approximation

to u. The existence of such a fixed n is important in, among
other things, compactness arguments in mahy places in the
sequel. One example of such a use is in Proposition 37.13,

in which the continuity of u, on 0 is established (the dif-

S
ficulty, of course, occurs on the boundary of 0).

LEMMA 37..1. Let u ¢ Uy. For each

6 > 0 let n; be an integrable function with
Ns(s) 2 1 for each s, such that

u(x, 8) <6 & x

and

X <8 T x

whenever Tx 2 1,(s). Then if U is a 5-approx-

imation to u, then

u(x, s) <38 x
whenever £x 2 17,(s).
Proof, We have u(x, s) = ,/x or

lu(x, 8) - u(x, 8)| g 6(1 + =x).




w8l
In the first case there is nothing to prove, and in the
second case, if Ix > né(s), then by using né(s) 2 1 we
obtain

a(x, 8) < 6(1 + zx) + u(x, 8) < 28xx + 8Ix = 36Ix.

This completes the proof of Lemma 37.1.

For each f ¢ ¥ and x € i, let
P(x; £) = {peq: £(y) — £(x) g p-(y — x) for all y ¢ q}.

Let €(x; f) be the infimum* valué that any coordinate of

any point in P(x; f) can achieve; more precisely,
g(x; £) = mini inf {pl :pe P(x; £)}.

If x is an interior point of 0 and £ is concave and

differentiable, then P = P(x; f) contains precisely one
point, namely the gradient f'(x); in that case g = ;(x; f)
is simply the smallest partial derivative fi(x). If £ is

*Ag usual, the infimum of the ehpty'setsis taken to

be #e; thus if P(X; £) = @ then §(x; f£) = +=.
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differentiable but not concave, then P can contain at most

a single point (namely the gradient), but may also be empty.
If it is concave but not necessarily differentiable, then

P is non—empty, and consists of the normal vectors to hyper-
planes that support the subgraph* of f at the point (x, £(x)).
This, in fact, is the general characterization of P, also
when f need be neither differentiable nor concave, and when

x may be on the boundary of Q.

LEMMA 37.2. Let u € Uy be increasing for

each fixed s. Then for each € > 0 and each real

a there is a 6 > 0 such that if G € uo is a

§—approximation to u, S € ¢ is such that

u(s) » €, and x is an integrable function from

I toq such that

s(x(s); &) <8

for all s € S, then

Zfsg > a.

*The set of all points underneath or on the graph.

S
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Proof. First we prove:

(37.3) If C is a compact subset of 1, then for
J each s there is a 6§ = 6§(C, s) > 0 such
that ¢(x; f) 3 6 for all x ¢ C and all

f ¢ 8, such that |f — ull g 6.

Indeed, if not, let {xl, Xys ...} be a sequence in C, and
{fl, f2’ +++} a sequence in 3, such that “fk - usu -0
and §(xk; fk) - 0. Let X be a limit point of {xk],
w.l.o.g. a limit. Further, assume w.l.o0.g. that g(xk; fk)

is "assumed at pl" for all j, i.e. that
1 4
inf {p” : p € P(xk; fk)} = g(xk; fk).
w fid

s It follows that for k = 1, 2, ..., there is ap ¢ P(x

such that pt < g(xk; fk) + %; then pi - 0, and

fk(}') - fk(xk) S pk' (y - xk)
for all y e n. Now for k= 0, 1, 2, ... set Y ™ ¥y +

(1, 0, ..., 0). Ssince Y € Qs we have
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1
(37.4) fk(yk) - fk(xk) s Py (yk - xk) =P~ 0.

Now

uly,, 8) — £ (v ) g (L +zZy)if, — ui
and

fk(xk) - u(xk, s) g (1+ Zxk)]lfk - us”.
Hence

u(y,s 8) — ulx,, 8) g [£ () - £ (x)]
+ [+ 5y) + L+ 2x)||E, - ul.

Since C is bounded and x, € C, it follows ‘that 1 + £x) is
bounded; hence also 1 + zyk~= 2 + Ix, is bounded. Since
||fk —uf - 0 by assumption, the second term of the right
side of this inequality approaches 0. The first term is

nonnegative because f is nondecreasing, and so by (37.4),

it approaches 0 as well. Hence the left :side tends to 0,
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and from the continuity of u it follows that u(y,, s) -
u(xo, 8) < 0, contradicting the fact that ug is increas-
ing. This contradiction establishes (37.3).

Let us now set
(37.5) v = y(s,8) = inf{zx: (@fedy) (| f-u |l g & and &(x;£) < 8)].
Clearly y is non—decreasing as & decreases. Suppose y is

bounded as § - 0, say y < Yo (= yo(s)). Then in the compact

set
C={xen:Ixgyyl,
g(x; f) comes arbitrarily close to 0 for f arbitrarily

close in norm to u_, contradicting (37.3). Hence for

each s,

(37.6) vy(s, 8) = » as & - 0.
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If the lemma is false, then for each k there is a

set Sk of measure » €, a % -apprqximationdﬁ to u, and an

integrable function such that

2
£(x, (8); 0) < & -
Xe'\875 Bg) < ¢

for s ¢ Sk’and

(37.7) zf X § @

Then:uﬁé - us“ < 1/k for -all s excépt for s in a set Vs
where u (V) g 1/k. From. (37.5) it then follows that for
s e‘Sk\V » we have Tx, (s) 3 v(s, 1/k), and so from (37.6)

we deduce that for such s,

x, (8) ~ = as k==
o 1.
Now define B ¢ I - E” by
‘zgk(s) if s € sk\Vk

&c(®) = l

k. - otherwise.
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Then\fér.each~s € I, gk(s) - as k -~ w. Hence from

Egoroff's theorem it follows that gk(s) -~ 2388 k =~ »

uniformly for s in a subset U of I of measure 1 — %e; thus

for s ¢ U we have gk(s) 2 Vi "o say. In particular, it

follows that for s € (Sk n U)\Vk’ we have
E?Sk(s) z Yk - @

From this and (37.7) we set

azsl x =J =X 2/ E?f,kg(%—-llg)vk-'“:
& Sk~k s, (S0

an absurdity. This completes the proof of Lemma 37.2.

LEMMA 37.8. Let u € U be increasing for

each fixed s. Then for each ¢ > 0 and each

a > 0 there is a 6 > 0 .and an integrable func-—

tion n such that if S e ¢ is such that u(s) > e,

b in q satisfies tb < a, G ¢ uo is a 6—approx—

imation to u, and ﬁs(b) is attained at §, then

g(s) s n(s)e

for almost all s € S.
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Proof. Lemma 37.2 yields a ¢6—which we call §; to
distinguish it from the 6 of this lemma—that obeys the
conclusions of that lemma. Let § = 61/3n. Because of
Lemma 37.1, there is an integrable function n such that
a(z, s) < 365z whenever £z > n(s) and G is a 6—approximation
to u. We will prove that this 6 and n satisfy Lemma 37.8.

Suppose that they do not. Then there is an S with
u(8) » €, a 6—approximation @ to u, a j with 1 < j < n,
ab in Q with Tb < a, and a subset U of S of pogitive

measure such that
§(s) > n(s)

for all s € U. W.l.o.g. we may assume that i?(s) =

maxizi(s) for all s in U. Now for fixed but arbitrary

S0 in U, let x be the vector whose jth coordinate vanishes

and all of whose other coordinates are equal to the cor-
responding coordinates of 2(30). Let p be the price
vector corresponding to 2 and S in accordance with Prop-

osition 36.4. Then

~5(3(s) s 8g) S G(x, sp) = G(F(sg)s sg) g Pr (% = §(s))

=P - sy = pIgica.




2Ty
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But since 2X(SO) > ¥ (so) > n(so), it follows that

i(y(sg)s 8g) < 36 £ §i(sp) < Iné max, §'(sp) = 6,9 (s

hence szé(so) < blzi(so), and therefore pJ < 8,. But we
have chosen p so that p ¢ P(z(s); ﬁs) for all s € 8.

Hence for s € S, we have
- 3 . N j
S(X(s)a uS) S P < 61‘

Furthermore, since 6 = 51/3n < 61 and & is a $—approxima-

tion to u, it is a fortiori a &6.,—approximation. Since

1
u(s) > €, it follows from Lemma 37.2 that EISQ > a > b,

contradicting Isz = b. This proves Lemma 37.8.

LEMMA 37.9. Let u € Y- Then for any ¢,

there is a u—integrable real function ¢, such

that for all s 13 I and all x Eg Q,

u(x, s) < e(g(s) + x).

Proof. Let ¢ be an integrable real function such that

u(y, s) g €Zy whenever Ty 3 ((8); such a ( exists because
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(35.1) must hold integrably in s. Then because ug is non~

decreasing, we have

u(x, 8) 5 u(x +‘£§, 8) < e(g(s) + =),

as was to be proved.

COROLLARY 37.10. let v ¢ Y- Then if

x is integrable, so is u(x)..

PROPOSITION 37.11. Let u ¢ uo. Then for

each € > 0, there is a § > 0, such that if

ie Yy is a S—approximation to u, then for

Ell S € ¢ and all b € (0 we have

lus(b) - ﬁs(b)l < e(l + gb).

Proof. Let ul(x, s) = J/Tx. Apply Lemma 37.9 using

% instead of €, both to u and to g, obtaining functions

¢ and o, with
ux, 8) g 3(46) + =)

uy (x5 8) g 5(g, (s) + ).




:
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i
i g
§
1
1
3

Next, choose § sufficiently small so that IU(£ + 5‘1) <1
whenever p(U) < 6, and also so that & g % Letting U be
the exceptional set in the definition of é—approximation,

we obtain for any X,

Flu@ -6e@l g A+ + [  (uE@ +u )
S S\U uns

A

FQ++ IU%(,Q +4) ¢t IU2—§8z

A

%’(1 + Z‘l‘z) + -2-36-(1 + ZIE_) = 6(1 + ZJ‘?\(’)

Now let us(b) and ﬁs(b) be achieved at y and § respec—

tively. Then b = [oy = [ §, and we have

ug(b) = Jgu(p) 2 Jgu(@) = Jgd(®) + [gu(® - a(@)
2 Js8(® - Jglu@® - 8@ z f8(P) = (1 + 2[sP)
= ﬁs(b) ~ e(l + zb).

Hence ﬁs(b) - us(b) < e(l + zb). Similarly
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ag(®) = [8(@) 2 [0 = Jqu(p) + [ (B(y) - u(y)
2 Jgu(p) — e(L + Z[gy) = ug(b) - e(l + zb),
and so
ug(b) = G (b) g €(1 + zb).

This completes the proof of Proposition 37.11.

We close this section with a proposition (Proposition
37.13) which, though not directly connected with the con—
cept of 6—approximation, is a consequence of Lemma 37.8.

First we require another lemma.

LEMMA 37.12. Let f ¢ 3 be increasing.

Then the concavification f* g£ £ is also

increasing.

Proof. Let x € 0. Since f is spannable (Proposition
36.2), there exist points Xy eees Xy in Q, and positive

numbers Qs eees O summing to 1, such that

k
2131 aixi = X
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and
25 a f(x.) = £4(x).
"1=1 1"V

If y > x, then there is a z > 0 such that y = x + z. We

then have

k
Zinl ai(xi +2z)=x+z=y

and so by the concavity of f* and the fact that f is in—

creasing, we ‘get

k

k
£*(y) 2 T aif*(xi +z) >z

i=1 aif(xi +2z)>¢ aif(xi)

= f*(x).

This completes the proof of Lemma 37.12.

PROPOSITION 37.13. Let u ¢ ub\be in-

creasing for each s. Then for each S ¢ ¢,

uS is continuous on (.

Proof. Let b € ; we wish to prove that us is con-

2 e ds

tinuous at b. Let
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L={i:bl>0}, M=(i:bl=0o],

and. let

al =0 forallie M},

dM = {aecq: al =0 forallie L};

QL-{aen

thus b € QL. Our proof will proceed in two stages: First,

we show that
(37.14) uSIQL is continuous at b.

Second, setting

Qﬁ = {a ¢ o’ : b/2 < ag 2v),

we shall show that

(37.15) for every € there is a § such that if
Ce dM, Icll < 8, and a ¢ Qk, then

us(a +c) - us(a) < €.

Together, (37.14) and (37.15) prove the desired continuity

of uS at b.

R N
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In proving (37.14), we will never "leave" the space

QL; therefore we may assume w.l.0.g. that QL = 0, i.e.

that b > 0. Then (37.14) turns into the assertion that

ug is continuous at b. By Proposition 36.3, ug is concave
on (3, and since b > 0, it follows that b is in the interior

; of n. Since every concave function is continuous in the
interior of its domain of definition, it follows that ug

is continuous at b, and so (37.14) is proved.

Next, we prove (37.15). By Proposition 36.3 and
Lemma 37.12, we may assume w.l.o.g. that u is concave for
each fixed s (otherwise, replace it by its concavifica—
tion u*). Suppose now that (37.15) is false. Then we

can find an € > 0, a sequence 6, - 0, and sequences {cj}

A
L
and {aj] such that "cj“ s 8y a; € 0y and

(37.16) us(aj + ci)-— us(aj) 2 €.

Since aj is in Qg, which is compact, it follows that {aj}
has a limit point a in g w.l.0.g. let it be the limit.
Note that since a ¢ Qt, we have ai > 0 for all i € L; hence

;1 applying (37.14) to a instead of b, we get that




(37.17) us(aj) - us(a)

as j = .
Now let us(aj + cj) be attained at zj. From Lemma

37.8 it follows that there is an integrable function 7

such that zg(s) < n(s)e for all j and almost all s. The
space of all integrable functions on S can be considered

as Ll(S x {1, ..., n}). Since the set of all x in this
space such that 0 < x(s) g n(s)e a.e. is wedkly sequentially
compact*, it follows that the sequence {xn} has a subse—
.quence that is weakly convergent, say to y. Then there

is a sequence of functions converging strongly (i.e.. in

the Ll—norm) to y, each one of which is a (finite) convex
combination of Y10 Yoo - [Dun-S, p. 422, Corollary
V.3.14]. Now every strongly convergent sequence in L1

has a subsequence that converges a.e. to the same limit;

so there is a sequence {zj} of convex combinations of

Y10 Xgr v that converges a.e. to y. Since zj(s) < nis)e
a.e., it follows also that Ej(s) < n(s)e a.e. Hence u(Ej)
is pointwise < u(ge), which is integrable by Corollary 37.10.

Moreover, from the continuity of u(., s) for each fixed s,

*[Dun-S], p.292, Theorem IV.8.9.
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3 : it follows that u(gj(s), s) = u(z(s), s) a.e. as j - =.
Hence the Lebesgue dominated convergence theorem applies,

3 ; and we deduce

(37.18) fsu(zj) - jsu(z).

Now from the concavity of u for each fixed s and the fact

the the Ej are convex combinations of the Xj’ it follows

that

R s 2 B e, st L

jSuQEj)-g minj Isu(zj) = minj us(aj + cj).

Hence by (37.18), it follows that

AP s st s .5

fsu(z)‘z minj ué(aj + cj).

But if we had chopped off any finite number of terms from
the originally given sequences {aj} and {cj}, this would
not have changed y nor any of the foregoing considerations.

Hence for all k we have

Isugz) > m:i.nj.ak us(ajv+ cj),
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and letting k - =, ‘we deduce

j‘su(_.x) > lim i‘nfj_.q q's_(aj + *cj).
Applying (37.16) and (37.17), we then deduce
(37.19) j‘su(z) > ‘uS"(fa)- + €.

On the other hand, since XY weakly, we have

fst = timg, Joyy = Hmy (@5 +cp) =ast my ey =a.

J=* ]

Thus by definitior: we must ‘have ‘f'su(z), < uS~(g)., in con-
tradiction to (37.19). This completes the proof of

/lj’ropos ition 37.13.
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38. THE_DERIVATIVES OF THE FUNCTION ug

In this section we shall establish the existence and
some continuity properties of the derivatives of the func-

tion Ug.

PROPOSITION, 38.1. Let ue % and S ¢ C.
Then for each j such that 1 g j g n, the par-

tial derivative ug = aus/ax‘j exists at each

point b ¢ Q such that bj > 0.

Proof. Without loss of generality let j = 1. Be-

cause of the concavity of ug (Proposition 36.3),
o = lim6*0+(us(b + 6e1) - us(b))/6

and

B = limy_,_(ug(b + beq) - ug(b))/s

both exist, though they may a priori be different; in any

case we have a g B. If a =B our theorem is proved, so

let us assume a < 8.

We now show that¥*

(38.2) ug(b + ve;) - ug(b) g min (ay, By)

*The. right side of (38.2) is oy when y > 0 and By when v < C.
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= e e e a— = <

for all y > —ﬁl. Indeed, suppose that

uS(b + Yel) - us(b) > Oy

for some y > 0 or
us(b + yel) - us(b) > By
for some y < 0. In the first case we will have
- = '
(38.3) us(b + yel) nus(b) a'y
for some a' > a and some y > 0. Now the left side of
(38.3) is a concave function of y that vanishes for y = 0,

and hence:

: — . f
ug (b # 6e;) = us(b) z a's

for éli 6 such that 0 < & < y. Hence the right hand partial
derivative of us'at b-is 2 a! > a; contradicting the fact
that it equais a. In the second case a coritradiction is

similarly obtained.
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Suppose now that us(b) is attained at y. Then we

claim that for almost all s € S and all y > —Zl(s),

(38.4) u(y(s) + ve;, s) — u(y(s), 8) g min (cy, By).

Indeed, if this is not so, then for each s in a subset U

of positive measure, there is a l(s) such that

u(y(s) + y(s)e;, 8) — u(y(s), s) > min (ay(s), By(s)).

By the measurable choice theorem (Proposition 36.5), we

may assume that y(s) is measurable, and clearly it may be
chosen integrable. Furthermore, either y(s) > 0 in a set
of positive measure, or l(s) < 0 in a set of positive mea-
sure. In the first case, let V be that set, define

z(s) = y(s) + l(s)eI for s € V, z(s) = z(s) otherwise.
Setting c¢ = js z and y = IS y» note that IS u(z)‘s us(g)

and that ¢ = b + e s hence

= [yu(@ ~ u(@) > ay,
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contradicting (38.2). In the second case (when y(s) < 0
in a set of positive measure), a contradiction is similarly
obtained, using B instead of a. This establishes (38.4).

1 > 0, there must be some set of s of

Since IS Xl =b
pusitive measure in which Zl(s) > 0. Now from (38.4) it
follows that for aIm&st all s € S with zl(s) > 0, the
right-hand derivative of u  w.r.t. x1 at x = y(s) is g a,
and the left-hand defivative is » B. Since B > a, these
‘two derivatives are unequal. So ug is not differentiable
at Zl(s)~w.r.t. x;, contrary to .u € ul’ This proves Proposi-
tion 38.1: “

If £ is a function differeatiable at a point of E,
we will denote by f' the vector (fl, ceus f?) of its par—

tial derivatives. 1u particular,
1
\;é (?:(u 3 ey ursl) v

PROPOSITION 38.5. Let u ¢ %, let b e

be > 0, and let us(b)'be attained at y. Then
for all S e C, all j=1, .... n, and almost
all s ¢ § we have ggfb) = uJ(X(S), ) when

zJ(s) > 0. Furthermore, for all x e y and

almost all s « § we hays

re—
= —
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u(x, s) — u(y(s), s) g ug(b)-(x - y(s)).

Proof. By Proposition 36.4, there is a vector p > 0

such that

(38.6)  u(x, s) — u(y(s), s) g p-(x — y(s))

B . for all x € {3 and almost all s in S; furthermore, pj =
ug(z(s)) for almost all s for which zj(s) > 0.
Now for an arbitrary y > -bj, let us(b + yej) be

attained at z. Then by (38.6), a.e.
u(z(s), s) — u(y(s), s) s p-(z(s) — y(s)).
Integrating this inequality over S, we obtain

ug(b + ve,) — ug(b) 5 p-(b + yey - b) = yp’.

By Proposition 38.1, the partial derivative ug
Letting y - 0+, we deduce ug(b) < pJ; letting y - 0—, we
J

exists.

deduce ug(b) 2 p’. Hence ug(b) = pj and Proposition 38.5

- is proved.

—
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The next proposition asserts that the gradient ué(b)
is continuous in b, and that this continuity has certain
uniformity properties, both in b and in S.

For ¢ > 0 and a > 0, we denote

Ae,a) ={xeQ:x3ce and Ix gal.

PROPOSITION 38.7. Let u e %;. Then for
every ¢ > 0 and every a > 0 there is a 6§ > 0
such that for all S with u(S) 3 ¢ and all b

and ¢ in A(e, @) with |[b - c|| g 8, we have
lug () - w3l <.

Outline of Proof. It is not difficult to prove that

a function that is concave and possesses all its partial
derivatives at every point in the interior of (| is neces-
sarily continuously differentiable there (cf. Proposition
39.1). The function ug satisfies these conditions (Prop-
ositions 36.3 and 38.1), and so it is continuously dif-
_ferentiable in the interior of Q; since A(e, @) is compact,
the continuity must be uniform w.r.t. b in A(e, o). Un-
fortunately, this line of argument will not yield the uni-
formity of the continuity w.r.t. S, which is essential for
the applications in Section 40. We must therefore use a

different attack.
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Let b and ¢ in A(e, @) be close to each other and let

ug(b) and ug(c) be attained at y and z respectively.* Let
Y(8) = (ug(e) - ug(b))-(y(s) - z(s));

from Proposition 38.5 it follows that ¥ is nonnegative.

Since

[ = (ui(e) - ui®)- (b - ),

it follows that [y is small. But since ¥ is nonnegative,
it follows that ¥(s) itself is usually** small.

Suppose now that the conclusion of the proposition is
false, i.e., that for some j, ug(b) and ug(c) are not close;
say ug(b) is considerably larger than ug(c). Since ¥(s)
is usually small, it follows that zj(s) is usually close
to‘gj(e). Furthermore, from Lemma 37.8 we know that xj
and‘_gj are bounded by some 7, so they cannot usually vanish;
it follows that there must be some s for which,gj(s) is not

close to 0, and moreover,‘xj(s) and 53(3) are close. 1If

“¥IT It could be shown that for some s, y(s) and z(s)
are close to each other and neither almost vanishes, then
our result would follow from the continuous differentiability

-0f u(-, 8) and Proposition 38.5. Rut this is not necessarily

true.

**].e., for all s except for a set of small measure.
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we now proceed in the positive xj-direction from gj(s),

then near z(s), u will be rising at a rate given approx-

imately* by

d
;;T u(x, s)'xﬁg(s);

by Proposition 38.5, this is equal to ug(c). On the other
hand, if k is a coordinate for which xk(s) differs con-
siderably** fromlgk(s), then since y(s) is small, ug(b)
must be close to ug(c). Therefore along the line connect-

ing z(s) with y(s), the hyperplanes Hy and H, given respec-
tively by

u = u(y(s), s) + ug(b)(x - y(s))
and
u = u(z(s), s) + ug(c)(x - z(s))

must be almost parallel. But these hyperplanes support
the graph of u(-, s) (Proposition 38.5) and pass through

A e e

it at the points corresponding to y(s) and z(s) respectively.

*Because u(+, s) is continuously differentiable.

**1f there is such. a coordinate If not, the y(s)
is close to z(s), and so in the argument below, Hy auto-

matically passes close to the graph of u(:; s) at z(s).
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Therefore Hb and Hc almost coincide along the line from
y(s) to z(s), and in particular,:Hb passes close to the
graph of u(-, s) at z(s). But since H, supports the graph
of u(-, s), it then follows that the rate of rise of u in
the positive xj-direction from z(s) cannot be much greater
than ug(b), at least if we average over a large enough
xj-interval. But this is in contradiction to the fact that

this rate is approximately ug(c), as shown above.

Proof of Proposition 38.7. Let 1 correspond to ¢

and o in accordance with Lemma 37.8, let b and c be in

A(e, o), and let us(b) and uS(c) be attained at y and 2z
respectively. We first wish to prove that there is a number
B, depending on u, ¢, and a only (and not on the choices

of S, b or c), such that
(38.8) Zué(b) < B and Zué(c) s B.
Indeed, setting x = 0 in Proposition 38.5, we obtain

ué(b)gz(s) g u(y(s), s) g u(y(s)e, s).
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Integrating over S, we obtain
ué(b)~fsz < fsugne) g Ju(ne).
Since b ¢ A(e, a), we have b > ce; therefore
eZué(b) = ué(b)'ee < ué(b)vb = ué(b)'fsz < [u(ge).

Thus Zué(b) < ju(ﬂe)/e, and similarly zué(c) < Ju(ne)/e.
Setting B = [u(ne)/c, we deduce (38.8).

In the remainder of the proof, let j be a fixed index.
We next claim that there is a number 61 > 0 (depending on

u, €, a, and j), such that

uf{s € s : xj(s) > 61} > 8;5 and
(38.9)

ui{s e s gg(s) > 61} > 8-

Indeed, for a fixed 61, let U= {8¢8S : zj(s) > 61}. If

u(U) < 61, then
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E Since n is integrable, it follows that the right side of
. this inequality will be < ¢ if &, is chosen sufficiently
14 small; but this contradicts ¢ < bl - j‘szj. The same
3 1] reasoning applies to z. This proves (38.9).
§ Because uj'(x, 8) is continuous in x for each fixed s
] - whenever xj > 0, it is, for each fixed s, uniformly con—
tinuous in the set
oy !
1 Ce) = {xen:xl; 8;» x g n(s)e}].
p So for each fixed s we may find a number 2.2(5) > 0 such
that
ld(y, 8) -z, 8)] < /3
E whenever |y — z|| < 8,(8) and y, z ¢ C(s). Furthermore,
‘. it may be shown that 32 may be chosen measurable, and we
?_. , may assume w.l.o0.g. that
i ‘: 22(8) 5 1
! i
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for all s. Since 89 1s measurable and bounded, it is
integrable. Since it is always positive, it follows that

if we define

63 = inf {IUEZ :uU) > 61/2},

then

Finally, choose & so that
5 <,e63/3nB.
Tet

£(s) = (ud(e) — ul(d))- (g(s) ~ 2(s)).

From Proposition 38.5 it follows that for s e S, §
ud(b): (y(s) ~ z(s)) < u(y(s), s) — u(z(s), s)
S ug(ed(yls) - z(s)); 3

3
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hence
(38.10) ¥(s) » 0.
Hence by the definition of B8, ?
(38.11) 0 g js,g? (u3(e) ~ ul () [(g - 2)
= (ug(e) = ug(B))+ (b = ©) g flud(e) ~ ul(d)flnyb ~ ¢ |
< Pné < e63/3 < e63/2.
Setting s
W= {ses : y(s) 2 egz(s)/Z},
we obtain
(38.12) | w(W) < 61/2;
for if u(W) 2 61/2, then because ¥ ingonnegative ((358.10)), i

iz %{ 59 2 €84/2,

contradicting (38.11).
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Suppose now that the proposition is false, i.e. that

lud(b) - ug(e) > e

for some j, w.l.0.g. ‘the one we have fixed. Assume first
that ug(c) - ug(b) > €. From (38.12) aiid (38.9) it follows

that there must be an s in S8 such that 5?(3)'> 6, and s ¢ W.

1
Choose such an s. Since s ¢ W, we deduce that x(s) <
€8,(8)/2. set y = ¥(s), by = 8,(8), ¥y = y(s), z =~ z(s)~

6

2 # ] )
w z + Tfej’ w ‘ 2 + 62ej. Then

a . j j,.. 62 552, 662
(ug(e) — ug(d))-(y = w) = ¥ = (ug(e) — ug(b))y= < 5= - -~ = 0.

Hence
ué(b)-(w,— yd < d%%g)'(w -y).
Hence by Proposition 38.5,
)

a@®, 8) = uly, 8) & uf(b} (7~ 3) = uk(B)(w + e, = )

. 8 . d
= ul(®)- @ = y) + J)52 < wl@)w - y) + uwl(b)gZ.
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On the other hand, for an appropriaté p € {0, 1],

awt, 8) - u(y, 8) = (u@wt, 8) — u(z, 8)) = (u(y, 8} - u(z, 8))

= oz * 08,25 836, ~ (uly, 8) - u(z, 9))
2 (12, 8) =96, - w7 - 2,

because of the definition of 5, = gz(s) and Proposition
38.5. Again using Prcposition 38.5 and z) = gj(s)<> 0,
we -deduce that

$o 3 €6y
at, &) — uy, 8) g ul(e)6, ~ =2 ~ wi(@)- (v — 2)

3, 62; 662
= uz(e)7= = —3= + ug(e) - (w - y).

Combining the two inequalities for u(w#, s) ~ u(y, s); we

deduce that

8

T2 | a2
ug(b)5= > “S(P)§~ = &y

Hence
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5 . .6 5,
ex® > (ud(e) ~ ug(b))72»> ezz.

[

Hence 2 > 3, an absurdity. The case ﬁg(b) - ug(c) > €

is

handled similarly. <7This completes the proof of Proposition

38.7.

COROLLARY 38.13. Let u e % - Then for

all j=1, ..., nand all § ¢ ¢, u; is continuous

at-each b in g with b > 0.

PROPOSITICN 38.14. Let u ¢ %;. Then for

every € > 0 éﬁd.every a > 0 there is a 6 > 0

such :that for all S with u(S) > €, all b in

A(e, a), and all s-approximations G to u,

we have

104 (b) = ug (B < e.

Proof. Fix j. Let € =‘%€¢~and let 61 correspond

to:e1 and a - ¢y in accordance with Proposition 38.7;

furthermore, choose 61 < €

616/4(1 + 8, +.a) in accordance with Propositicn 37.1:.

1 Let & correspond to

Then 'since G is a ¢—approximation to u, we have
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and
|a(b + alej) ~ ug(b + alej)l < cle/z{.’
Hence

a (b + blej) ~ Gig(b) _ ug(b + 6ye.) _AuS(b)i L e
,61 - 61 S | 7°

Similarly

0 (B) ~ 0g(b = 81e)  ug(d) —ug(b - ey

e ‘ - - ‘[ <5 .
5, 8 2

‘But beczuse of the concavity of ﬁS;(Proposition43613), we

have

4. (dy — (b = 6,e.) 5 - Gg(b + 8,e.) ~ G (b)
Sy S &,

=

Tﬁus, again because. of the concavity,
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- u (b) + 6,e.) — u,(b)
“J S 1 J . S €
us(b) 2 61 _ 7

A Ly € 1
ug (b + élej) 5 7

v

v

d®) -5 -5=dd®) <.

Similarly &) (b)

A

ug(b) + ¢. This completes the proof of
Proposition 38.14.
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39. THE FINITE TYPE CASE , 7

In this section we shall pfove* Proposition 31.5.

PROPOSITION 39.1. Let ‘f be a continuous j

concave function defined on fi, and for some j

with 1 ¢ j < n, assume that £ = af/axj exists f

at each ¥ & 0 guch that xJ > 0. Then £ is

contifiuous at each point x such that xJ > 0.

Proof. Without loss of generality let j = 1. Suppose

1

f* is not continuous, say at y, where yl > 0. Let X Y

fl(xk) ~‘a,vaa#‘f1(¥) (possibly a = tw), Without loss of
gene;ality let x& > ylAZ for all k. Then for all y > -y172,

we have -
(39.2) EGy + vep) - £(x) 5 £ (v

1f o is finite, let k ~ = and obtain from the continuity

of £ that
£(y +yey) - £(y) g a

for all y > -y1ﬁ2. Hence, because fl(y) exists it must be

equal to o, a .contradiction. If & =~iw,f1et‘yrs‘¥ yl%h;-theh

*ery few of the tools developed in Sections 35, 37, ~
and 38 will be used in the process; and sometimes only spe-
cial cases--which. could have been established more easily
than the general cases=-<will be used. All in all, what is
needed from: those sections: for the finite type casé could
have been develsped separately in a few pages. We -did not
do this because we wished to avoid an unnecessary dupllca-
ticn, and tecause we consider the finite type case to be
chiefly a stepping stone to the general one. ~
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(39.2) yields-f(xk + Yel) - f(xk) - —», whereas continuity
implies that it tends to f(y + yel) — f£(y). This contra-

diction proves Proposition 39.1.

PROPOSITION 40.3. Let f ¢ 8y, and let u < %,

be defined by ug = f for all s € I. Then for

all a ¢ () we have

uI(a) = f*(a),

where f* is the concavification* of f£.

Proof. Assume first that a > 0 and that f is concave.

Let

G = {(v, X) ¢ El x 0 vg £x)}.

Then ‘G is concave, and (£(a), a) is on the boundary of G.
So there is a hyperplane containing (f(a). a) that supports
G, i.e., there is a q € E” and a P ¢ E1 such that (P, q) # 0

and

*See Section 36, in particular Proposition 36.2.
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(39.4) Prv—gqxgefa)-qa

for all (v, x) € G. If for any j, we would have qJ <0,
then by setting v = 0 and letting xJ be large and xt =0
for i # j, we would get a contradiction to (39.4). Hence,
qe . If p <O, then by fixing x and letting v be a

negative number with large absolute value, we again get

- s TS N oo : —.
T T TR PR NRTIC Ten O

a contradiction to (39.4). If p = 0 then by (P, q) # 0
and q € Q we get q > 0; hence since a > 0, we get q-a > 0.
But if we seL v = 0 and x = 0 in (39.4), we get 0 < —qa,
which is again a contradiction. We conclude that p > O,
which permits us to divide (39.4) by P and obtain a

P € u such that v — p'x < £(a) — p-a for all (v, x) € G.
If in particular we set v = f(x) and recall that u(x, s) =

f(x) for all s, we deduce that

u(x, s) —u(a, s) < q- (x-a).

Hence by Proposition 36.4, uI(a) is attained at x = a.
Since f is concave, f* = f, and so the proposition is
proved in this case. Z

When f is concave but a is not necessarily > 0, then

o1 g

we apply the case just proved to the subspace of E" obtained
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b

by considering only those .coordinates: j for which a~ is
positive, and obtain the desired result.

When £ is not necessarily concave, then we apply
Proposition 36.3, and deduce from the concave case just

proved that

uI(a) = u*I(a) = f*(a).

This completes the proof of Proposition 39.3.

LEMMA 39.5. Let f ¢ 81- Then the con—

cavification f* is also in 81-

25222. Define u € Uy by u(x, s) = £(x) for all s € S.

By Proposition 36.3, u; € Y for all s € S, and hence

f* € &y To prove that f* obeys the differentiability
condition (35.2), note that by Proposition 39.3, uI(x) =
f*(x) for all x € Q. Hence by Proposition 38.1, f*j(x)
exists whenever xj > 0. Since f* is continuous and con-
cave, it follows from Proposition 39.1 that f*j is con-
tinuous at each x €  for which xj > 0, and so (35.2) is

verified. Finally, the fact that f* is increacing follows

from Lemmd 37.12. This completes the proof of Lemma 39.5.

e A )

- St

- oo 2=
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COROLIARY 39.6. If u e "1’ then u* ¢ “1'

Proof. This is an immediate consequence of Lemma

39.5 and Proposition 36.3.

Let £ . fk be concave members of &l. Denote

1)
u; the nonnegative orthant of Ek by 8¢ For y ¢ =5 and z ¢ (),

define

k L)
B v (39.7) g(y, z) = max {zi=1 ylfi(xi) PXps oeees K€
‘ k i
- ] and zi=l y xi < z}.

If we set w= (y, 2), thenwe 2 x Qc En+k. Thus

g = g(w) is a function of k + n nonnegative real variables.

Note that the inequality sign in the constraint

ZE=1 yixi < z may be replaced by an equality unless

k i S | i
T ¥V = 0< 2y, 20

It is easily seen that the max in the definition of

g is attained. Indeed, if y > 0, then the constraint set
is compact; and if one or more of the coordinates of y
vanish, then we can ignore those coordinates and the cor-

responding x., entirely, and the constraint set for the

i
remaining X, will still be compact. If all the yi vanish—
i.e., if y = O—then, of course, g(y, z) = 0, and the max

is achieved for any k-tuple of xs in Q.
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LEMMA 39.8. Let {Sl, ceey Sk] be a

partition of I, and define u in ul of finite

type by

¢ T WA 05 A

u(x, s) = fi(x) " when s € Si' {

For S c I, define‘yS € & by y; =u(s n Si)' . 4

Then

ug(z) = 8(yg, 2)

for all z € Q.

Proof. Let g(ys, z) be attained at (xl, ceny xk).

Define x by
g(s) =X, for s e SnS,;.
Then
[x =12 yix < z,

and hence




.,,tj
%,
A
i

_ k i
US{,Z) 2 J‘Su(i) = Ei-l ysfi(xi) g(ys: z).

To. cbtain the opposite inequality, let uS(z) be attained

at x. Define'leg veiy xk) by

, 1 I .
R = X, if p(SﬂS.)#O
Xy = n(sn Sij SnS{v t
arbitrary, if u(S n Si) = 0.

Then by the concavity of fi’

1 . 1
£.(x;) > J £.(x) = = u(x)
117 2 uE sy sns, * y; Isnsi ~

if (S n Si) # 0. Furthermore

kK i, _ k .
Zie1 Yg¥p = Zimp (S 0 S x, = -fs

X = 2.
~

Hence

k i = k £ il = [ Y w31
1 i - ] L

This completes the prcof of the lemmsz.
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LEMMA 39.9. g is concave, nondecreasing,

and continuous on E x Q.

Proof. We first prove the concavity. Indeed, let

(yI, z,) and (¥9, z,) be in = x 1, and let g(yl, zl) and

g(y9, z9) be taken on at {xll’ ceey xlk} and fx21, ceey x2k} {

respectively. For 0 g a g 1, let
(v, z) = a(}'l, Zl) + (1 - a)(Yz, 22):

and for each i define

i i i . i
‘(ayixli + (1 - a)y;x2i)/y s 1ify " 50

X, = l
0 otherwise.

Then

ki Kk i i
Bimy VX = T3 loyix); + (1 - a)yyx,.]

ki kK i
SO L Nt L -a) B, yox,,

A

az, + (1 - a)z2

= Z.

So if we let L = {i : 1 S 1igkand yi > 0}, we obtain

from the definition of g and the concavity of the fi that

I e e T W, IO S AN
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kK i
gy, 2) 2 81,1 y fi(xi)
i i
s[ovy (1 -a)y,
2 B V| TE £,(x4) + — . £;,0Gp4)

ki vk i
@ Ty N EiE )+ (- @) Ty vpf(xpy)

= ag(y;s 2;) + (1 —a)g(y,, 2,).

This shows that g is indeed concave.

Next, we show that g is nondecreasing in w = (y, z).
Indeed, suppose w; > W, and g(wl) < g(wo). If we draw a
straight ray (half-line) starting at L) and passing through
Wys then this ray must always stay in & X . On the other
hand, from the concavity of g it follows that at a point
on the ray sufficiently beyond Wis 8 will be negative.

But it is clear from its definition that g can never be

negative. This demonstrates that g is nondecreasing.

Finally, we prove the continuity of g at each point
W = (yo, zo) of 5 x Q. Note first that g is homogeneous
of degree 1. Hence we may wholly restrict ourselves to
the case in which 2?;1 yé < %. In that case we may find

a partition {Sl, ceey Sk} of I and an S ¢ I such that

i
Yo * (s n Si)'
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If we define u in U, as in Lemma 39.8, then from that

lemma it follows that

ug (=) = 8(ygs 2)

for all z in g. Hence from Proposition 37.13 it follows
that g(y, z) is continuous in z at (yo, zo).
To complete the proof of continuity it is sufficient

to demonstrate

(39.10) For every ¢ there is a § such that
if ||(y, 2) —= (yo, zo)" < &, then

lg(y, 2) - 8lyys 2)| < e

So let € > 0 be given. For each i there is an n such
that fi(x) < €l|ix|| whenever |xl|| > n; w.l.0.8. we may
choose the same n for all i. It then follows* that for

all x and i, we have

(39.11) fi(x) < e€(n + x).

*Compare the proof of Lemma 37.9.
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Now for given (y, z), define § ¢ & by'yi = min(yl, ya) for
all i. Let g(y, z) be attained at (xi, s xk)u' Since

§ <y, it follows that (x;, ..., %) satisfies ‘the con—

straints in the definition of g(¥, z). Hence
g(5, 2) 2 Tooy 945 (x,)
A Tt U3 NES b A Lo
Therefore, using the monotonicity of g and (40.11),

(39.12) 8(}': z) — g(9, 2)

k i k i
ST Vi) -2y 9E &
k 1 Gi n ki .1 j
§ €M 21‘1 (y 9 ) + € zjgl zi=].'(y =Yy )xi
k i i n k i j

i i
€n21;,=1 (y" —-§) + ¢ zz.

Now from the definition of ¥ it follows that

hence if in (39.10), & is chosen sufficiently small, then
the first term on the right side of (39.12) may be made

less than €, say. As for the second term, if & is chosen
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less than 1/n, say, then we will have

e z < e(l + zzo).

Thus altogether we obtain

8(y, 2) - g(9, z) < (2 + 52).

Since g is monotonic and y 2 ¥, it follows that g(y, z) -

g(¥, z) > 0. Hence

ey, 2) — g(¥, 2)|| < =(2 + £z) -

Similarly we obtain

18(ygs 2) ~ g(F: 2)|l 5 (2 + 1z).
Hence
lely, 2) - 8(ygs 2)ii s =(4 + 2z2).

This gives us (39.10) with a factor of =(4 + 2220):

- -




I
13
i

PRI I e PP T S S W RVPrE

-129-

and (39.10) follows without difficulty. Thus the proof
of continuity is complete, and with it the proof of Lemma

39.9.

PROPOSITION 39.13. For each p with

l<psk+n, gP = ag/ow’ exists and is

continuous at each w ¢ 8 x 0 for which wP > 0.

Proof. First, we show that g is differentiable in y1

whenever y1 > 0. Indeed, let Yo € ®» 29 ¢ Q, and let
g(yo, zo) be taken on at {x01, cees x0k}. Define a func—

tion h of the positive real variable y1 by

k i

1 1 1,1 '
h(y’) =y fl(XOIyO/Y ) + 21-2 yOfi(XO“i)'

Since we wish to fix attention on the variable yl,
it is convenient to set gl(yl) = g(yl, Yg’ ceey yg, zo);
in particular, therefore, gi(yé) =,g(y0, zo). Now since

15 1 . k «ilw - k i -
Y X190/ * Tiag Y5%01 = i1 Yo¥or = %

if follows from the definitions of g and 8; that
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(39.14) h(yl) < gl(yl)

for all y1 > 0, and of course

(39.15) h(yp) = 8, (yg)-

Next, note that h is differentiable whenever y1 > 0;
this follows from the differentiability of fl(x01y3/y1)
as a function of yl, which in turn follows from the fact
that fj(x) exists whenever xj > 0. Of course it may happen
that some of the coordinates of x01 Qanish, but then any
change in y1 does not affect the corresponding coordinates
of x01y0/y » 80 that the differentiability of h is not

affected. In fact, if we let M = {j e N :‘xJ > 0}, then

01
; ' (v = S5 nyh
} ” 1,1 1 j1 0
: _ , *0150

In particular, we obtain

L., ;
h'(yp) = £1(x01) = Z50 %01 £ (xy)-
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On the other hand, since g is concave in w, it follows
that 81 is concave in yl; hence there is a; supporting line
to its graph at yé, i.e., there is a linear function t(y")

such that

LY 3 gl(yl)
for all y1 > 0, and

L) = 8,(7)-

Recalling (39.14) and (39.15), we find that g, is "trapped"
between the two differentiable functions ¢ and h at yé,
and so must be differentiable. The differentiability of
g, at yé is of course the same thing as the existence of
the derivative ag/ay1 at (yo, ZO)' A similar arguﬁgnt
shows that all the derivatives ag/ayi exist whenever

yi > 0, for each i in {1, ..., k}.

The existence of the partial derivatives ag/azj for
zj > 0 is an easy consequence of Proposition 38.1 and Lemma
39.8.

Combining the existence of the partial derivatives

with the continuity and concavity of g (Lemma 39.9), and
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applying Proposition 39.1, we deduce the required con-
tinuity of the derivatives.*
Denote by H the set of all superadditive set—functions

in pNA that are homogeneous of degree 1 (see Part 1v).

LEMMA 39.16. If uce ul and u is of

finite type, then v (as defined in (30.1))

is in H.

Proof. First we show that v ¢ pNA. By Corollary

39.6, we have u* ¢ ul’ and certainly u* is of finite type
as well. Thus there is a finite set {fl, ceey fk} of con—
cave functions in & such that each u§ is one of the fi’
If we now define g by (39.7), then from Lemma 39.8 we
obtain ug(z) = g(ys, z) for all Sc I and z € Q, where

Y is defined by

i
yg =u(s n 5;)

*The basic idea of this proof, to prove the differenti-
ability of a function by "trapping" it between two dif—
ferentiable functions, was adapted from [88] (see the lemma
on p. 7, and its proof on pp. 8-9 of [88])'

haie o




and Si is defined by

= . * =
S; {sel: u¥ fi}.
Now by Proposition 36.3, ug(z) = us(z); hence
us(z) = g(ySJ z)'
If we write n(S) instead of Yg» then we see that n is a

k—dimensional vector of non-atomic measures on I, and we

have

(39.17) us(z) = g(n(s), z).

Now define an n—dimensional vector ( of NA-measures

¢(s) = [ a.
S

Substituting ¢(S) for z in (40.17) and using the definition

of v (30.1), we obtain

v(8) = ug(c(8)) = g(n(s), ¢(s)).
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Letting v = (n, (), we see that v is a vector of nonnegative

measures in NA, and that
(39.18) V=g, v

Since g is continuous and nondecreasing (Lemma 39.9), and
since for all i, ag/awi exists and is continuous whenever
wi > 0, it follows from Proposition 9.17 that g , v, and
hence v, is in pNA.

To show that v is homogeneous of degree 1, use the
Weierstrass approximation theorem in k + n dimensions to
find a sequence {hj} of polynomials (in k + n variables)

such that

lhj(W) -gw)| g1/;

for all w in the range of v. For these polynomials it
follows from the defining properties of the extension

operator (in particular (21.1), (21.2), and (21.3)) that

\l

(hj o V)*(axg) = hj(av(S)),

where the * denotes the extension (see Part III). Letting

ST AT ® TR T TR

R O N T —.
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j - = and using the continuity of the extension operator

in the supremum norm (22.9), we deduce that

v*ayg) = (8 o v)*(axg) = glav(s)).

But since it is easily verified that g is homogeneous of

degree 1, it follows that

g(@v(s)) = ag(v(8)) = av(s).

Hence v*(axs) = av(S), and so v is homogeneous of degree 1.

We have demonstrated that v ¢ pNA and that it is homo-—

geneous of degree 1. Since its superadditivity is obvious,
the proof of Lemma 39.16 is complete.

We are now ready for the

Proof of Proposition 31.5. This follows immediately

from Lemma 39.16 and Theorem F.




40. PROOY OF THEOREM G

The proof will proceed by reducing the general case

to the finite type case. In. the process, we shall dlso

- prove Proposition 33.2.

LEMMA 40.1. Let u e ui and a be_given,

where a is u-iintegrablets Then for everv ¢ > 0
the}:e is a 8§ > 0 such thgt if m i3 a positive

integer, 4 ¢ %; 18 a 6-approximation to u, and

§1 < cee 8 C S =1

is a sequence such that j's‘lg > ce and

u(Sk,'_l\Sk) < 6 for all k, then ’

(40.2) IR 1v(Spyg) - ¥(Gpyg) - W) - F6 ] <,

where v and ¥ are defined by

(40.3) v(S) = us(-.j'sg) and Vg = &S([Sg) for all s.

Proof. Set A = v(Sk+1) - i‘r(sk_'_i) - (v(Sk), - %(Sk)).
We start out by fixing attention on a single k. To simplify

the notation by eliminating the need for a large number of
subscripts, set S;.., = g, u =Wy, |« a=Db, and let
— ’ kL7 TS 0 f Seb” 7

v(S) = w(b) be attained at y. Similarly, set S = Sy

T AW e Y
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= e = = i
uSk Wy Jg @ bo’ and let v(So) wo(bo) be attained
at Lo Adopt a similar notation for ¥, &, etc. Also
set V = S\So-

For O <8 g 1, set

g(e) = wo(ejs y+ (1 -8)b)).
o
The function g is continuous on the closed unit interval
{0,1], and is differentiable in the interior (0,1). The
continuity follows from Proposition 37.13; to prove the

differentiability, let

c, = e‘j's y+ (1 - G)bo.
[
Then since b_ = IS a > 0, it follows that c, > 0 for all
b ¢ (0,1). Appiyigg Corollary 38.13, we deduce that wi(x)
exists and is continuous at x = <, for each j and each
in (0,1). We conclude that g'(v) exists for all s <« (0.1),

and
g'(8) = w'(c ) A,

where o ¢ E" is defined by




RN R S A R A b A S o S A a i

= [ y-b,
SO

- [' —_ ]'—-[ a — ‘a]
Jsz J‘Vz J‘S~ JV~
=] @-p.
v

Since g is continuous on [0,1] and differentiable in
(0,1), the mean value theorem applies, and we deduce that
g(1) — g(0) = g'(e) for an appropriate . Setting ¢ = Cq

for that g, we obtain

(40.4) wo(‘fS ) —w (b)) = wi(c) a.
o

Now w(b) is attained at Yy; hence by Proposition 38.5,
(40.5)  u(x, s) — u(y(s), s) s w'(b) (x - y(s))

for almost all s ¢ § and almost all x ¢ Q; in particular
this is true for almost all s ¢ So' Since trivially we
have ISOZ = fsoz, it follows from Proposition 36.4 that

wo(jsoz) is attained at zlso; that is, we have

(40.6) wo(j'S o= JS u(y)-

o 0
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E Rl I I

By applying Proposition 38.5 to So we obtain

u(x, s) — u(y(s), s) gw ([ y) (x - y(s))
,V SO
.; whenever s € So and ISOX > 0. From this and (40.5) it

follows easily that if IS y > 0, then
o

40.7) w(b) = wé(js Y)

o
(since for each j there must be an s in S, with ZJ(s) > 0).
Formula (40.7) is needed for later reference; at the moment

we need only (40.6), which, together with (40.4) yields

wolby) = = wo(e)-a + IS u(y)-
o

Since w(b) = fsu(z) by definition, it follows that

(40.8) w(b) — wo(bo) = fvu(z) + Wé(c)'A°

e 2 e gt gV % syt 4t

BN

I1f we go through the above argument for i, defining ¢ and

A in the appropriate fashion, i.e., by setting

Srptd e L

[T VTN S A PO P S i » 4 I .
SRl : e " RO P O PEP " ,

T e e
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2 =38 g+ (1L=7%b,

SO

for an appropriate o [0,1] and

~

b=[(a-3).
V'
then it follows that
@(b) — @ (b)) = jvﬁ(z) + &) (2) 4.
We note also that
(40.10) u(y(s), s) — ﬁ'(b)-z(s) < 0(y(s), s) - ﬁ'(b)°z(s)
for all s ¢ S; this follows from Proposition 38.5. Similarly
u(g(s), s) —w'(b)-§(s) g u(y(s), s) —w'(b)-y(s).

Now let
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L= [ [up) - 8]
1= [ [0 ~ u@)

| -
L]

I, = [W'(b) = @'()] s
)= @' @) -w®)]3
I, = [w!/(c) —w'(b)]-a
1, = [#2(8) - %'(b)]-a
3, = [%2(8) - w!(®)]-2
3y = [W@) = w' (b)]-4.

Note that
13.= J1 + J2 - 12.

Then we have

(40.11) A = w(b) — w (b)) ~ G(b) - ¥_(b_))
= [ u(y) + &' (b)-a + (w (c) —w'(b))-a
- J [a(g)y - @' (b) g + w'(b)-a] — (@i(e) -~ &'(b))-2
s Ju( +w'(b)a + I,
= [ 1a¢p) = ¥ (b)-y + &' (b) 2] - 1,

+1,+ 1, -1,

<

<3

<

<

=1

.—l

where the inequality follows from (40.10). Similarly

(40.12)'Ak§11+12+I3——13=11—I3+J1+J2.
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The proof of Lemma 40.1 will be completed by estimat-—
ing the quantities I, 11, and J,. These quantities can
be made sufficiently small (in absolute value) to prove
(40.2) if the § appearing in the statement of the lemma
is appropriately chosen.

It will be useful to make the following definition: a

quantity is uniformly small when 6§ is chosen sufficiently

small if for every ¢; > 0, it is less than ¢, in absolute
value, for appropriate choice of 6, uniformly in 1, So’ and S
(i.e., uniformly in U, in the choice of the chain # c 8, € 5, c
and in the choice of a particular link in this chain).

Let a = 2Iﬁ° By Lemma 37.8, there is an integrable
7, depending on u and ¢ only, such that if § is sufficiently
small then y(s) < n(s)e for almost all s € S. Choose n

so that also a(s) < n(s). From this it follows that

(40.13) iell z J ns 3l g § a
Vv A

Next, let D be the exceptional set in the definition
of 6—approximation, i.e., the set in which we do not nec—
essarily have uus - ﬁs" S &8. Let ¢ be an integrable real
function such that u(x, s) g ¢(s) + £x for all s in I and

all x in Q; such a ; exists by Lemma 37.9. Then

‘2
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40.14 I (y) - (y)| = +
( ) Ihls Ivluz T J‘V\D IVnD

oA

of (L+zy)+ [ (¢+zy+/Ey)
V\D vnD

A

8/ (L + ) + [ (¢ + 2nn).
\'} viD

Similarly,

(40.15) |1l g 8f (L +np +[ (¢ + 20m).
v vnD

\D
Next, we must estimate the terms that multiply a
and J,.

1 2
For this purpose note first that by (40.7), if IS y>0,
)

and 5 in the expressions for 12, 12, 13, i3, J

then
(40.16) I, = wi(c) —wi(f ¥))-a,
S
o
(40.17) Ty = @5@® - p)-ds

(o]

and similarly if IS § > 0, then
o

(40.18) I, = @ @) -8 (f $)-h.
S
o
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Now
c—-J y=eof y+@-wb -] y
So So So
=@Q-9)®, -] p =-(1-0a
SO
Hence
lle = [ xll = ualls
S

o

and similarly
5 I& = gl s Nal-

Combining this with (40.13) and with the fact that u(V) < 6,

we obtain that if & is chosen sufficiently small, then

(40.19) jic ~ [ y|l and |8 = [ §i| are uniformly small.
S

SO (o]

Furthermore, we have

¢ - I y=¢—-c+c- j y= 6(a — a) + ¢ — j ¥
So So 5o

Ya e e




=145«
Hence

e = xhog Il + g + fle = § gl
S S
o )
and combining this with (40.13) and (40.19) we obtain as

above that if § is chosen sufficiently small, then

(40.20) e = [ yll is uniformly small.
S

o

We now make use of the assumption that IS a > ce.
1~
If we recall that S =S, oS, and that b_ = {o a, then
o k 1 o So~
from (40.13) and u(V) < 6 it follows that when 6§ is suf—
i s 1 A 1
ficiently small, fsoz 2 3¢e and ISOZ 2 3¢e. Hence the
"~ n (3 1
vectors b, c, &, ISOX and ISOX are all in A(ie, a). So
we may apply Propositions 38.7 and 38.14, and formulas
(40.16) through (40.20), and deduce that if & is chosen
sufficiently small, then the terms multiplying a and A
in the definitions of 12, 12, 13, 13, J1 and J2 will be
uniformly small. Taking into account formulas (40.1i1)

through (40.15), we deduce that for any given € > 0, if

6 is chosen sufficiently small, then

(40.21) Al g 6.['V(1 + nn) + jvm)(g + 2nn) + “‘JVII;
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here &, n and 4 depend on u, a, ¢, and € only, and not

on the choice of G or the Sk (providing, of course, that

{t and the Sk satisfy the conditions of the lemma). Writing
Vi for V and recalling that Vi =V = S\So = Sk+1\sk’ we
deduce that the Vk are mutually disjoint, and their union

is included in I; similarly, the Vk N D are mutually dis-

joint, and their union is included in D. Hence from (40.21)

we get

z’li‘gl Al g 8f(L +nn) + ‘]'D'(g + 2nm) + €, fn

Using the integrability of 5 and ¢ and the fact that u(D) g 8,

we deduce that if 6 and €, are chosen small enough, then
m
Temp 18] 5 €

This completes the proof of Lemma 40.1.

PROPOSITION 40.22. Let u ¢ Ups and let

a be u-integrable. Then for each ¢ > 0 there

is a § > 0 such ;hat if e ul is a 6-approxi-

mation to u, and [sa g Se, then ¥(S) < ¢, where

Vv is defined by (40.3).
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Proof. Clearly uI(O) = 0. By Proposition 37.13, uy
is continuous on 1. Hence for & sufficiently small,
£3 S e yields

(40.23) uI(Lg) <~% €.
S

On the other hand, if in Proposition 37.11 we substitute
%-e for ¢, then it follows that for & sufficiently small,

we have
lup(fa) - 4,(fa)] < ke (1 + %fa) g 2e(l + 1) = +
S 143 A & A 7€
Combining this with (40.23), we get
o a a 1 1
() = us(fg) S ul(g_g) <ze +5c =ec.
]

This completes the proof of Lemma 40.22.

PROPOSITION 40.24. Let ue Ups let a

be u-integrable, and assume

(40.25) for all s ¢ I, either a(s) > 0 or a(s) = 0.

Then for each ¢ > 0 there is a § > 0 such that

if U e U, is a 6-approximation to u, then




TN T AT

be a chain.

PRV T

- ¥8=

lv - %l <,

where v and v are defined by (40.3)

Remark. Condition (40.25) says that for each s, either

all coordinates of a(s) are positive or all vanish. This
condition is implied both by (31.4) and by n = 1; we will
use it to state (and prove) below a common gereralization

of Theorem G and Proposition 33.2.

Proof. Let 61:cqrrespond‘to %@ in accordance with

Lemma 40.22. Choose y sothat* 0 «< v < Ial and so that

fa < vy implies Fa < ole° this is possible because of
S

(40 25). Cnoose € >

> 0 so that fa > vy implies jg > €83
Q

S N [
this, again, is possible because of (40.25). Let
es = min (e ‘le )
2 . 1’ Vi -9

and .choose 82 to correspond to ¢, in accordance with Lemma
40.1. Let 5 = min (8, 8,).
Let w = v - ¥, and let
@ =8,c8;¢

ve & thc S' =1

m+l

It is always possible to insert finitely

£ ‘= 0, then from (40.25) if follows that fa =0,
and the whole problem becomes trivial.

s A~

e e R
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many additional sets So1s Sg2s +++» Sq1» S12s +res ey
Sml’ sz, ... into the chain so that S0 c 801 c S11 C ..
Slcsllcslzc ee © L C S E81C8,C . C8 and

the measure of the difference between two neighboring sets

is < &; that is, if we relabel the new sequence Ugs +-+» Up+1 =1,

then p (0, 41\U)) < & for all k. Furthermore, by Lyapunov's
theorem in one dimension we may suppose w.l.o.g. that for

one of the Uy, say for Uq, we have Igl = y. Then
Uq
? 1w (S, 1) (S| Fz) lw(U, ,1) (U, )1 q>:,1+ g
W -w < w -w = e

il

Lemma 40.1 and the fact that 1 is a §-approximation--hence
a fortiori a 62-approximation--to u yield
13 1
<€, < wE .
g S°257
Furthermore, since U is a §-approximation to u, it is a
fortiori a él-approximation. Hence by the monotonicity

of v and ¥ and Lemma 40.24, we have

Lout
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q-1
T lw(Ui4) - wU)!

k=0 k+1 k
q-1

= ¥ |v(U,,.,)
k=0 k+1

V(Uk) - G’(Uk"'l) - Q’(Uk))l

B )
r v (U
oo k+1

(AN

q-l ~ ~N
v(Uk)l + k=2-0 |v(Uk+1) -,v(uk)l

q-1 Q-1 | .
= kEO (V(Uk+1) V(Uk)) + kEO (V(Uk"'l) - V(Uk))'

v(U) +9(U) < ge +7e =Fe,

because &g < 51e (note that u is a O-approximation, hence
q
trivially a 6,-approximation, to itself).

We conclude that

z | | <%e +1
0 w(Sk+1) -w(Sk) <ge tye =¢,

k=
N
and it follows that |lv - ¥|| = |lw| < €. This completes

the proof of Proposition 40.24.

PROPOSITION 40.26. Theorem G holds if
(31.4) is replaced by (40.25).

Proof. Recall that H is the set of all superadditive
set-functions in pNA that are homogeneous of degree 1. By
Proposition 35.6, for every & there is a §-approximation U

to u that is of finite type. If ¥ corresponds to the given
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a8 and to this U (in accordance with (40.3)), then by
Proposition 40.24, for given ¢ we will have ||V - v|| < ¢
when 6 is sufficiently small. But by Lemma 39.16, ¥ ¢ H;
thus v can be approximated in variation by members of H,
i.e., it is in the closure of H. But H is closed (Proposi-
tion 27.12), and so we have proved that v ¢ H. Proposition
40.26 now follows from Theorem F.

Theorem G and Proposition 33.2 both follow immediately
from Proposition 40.26.
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41, THE ASYMPTOTIC VALUE OF A MARKET

Throughout this section, pNAD will denote the closure
of pNA + DIAGE(see Section 19 for the definition of DIAG).

PROPOSITION 41.1. There is a value © on

PNAD that is continuous in the variation norm

and enjoys the diagonal property; furthermore,

there is only one such value. Finally,

pNAD c ASYMP,

and the value v coincides with the asymptotic

value on pNAD.

Proof. We have pNA c ASYMP (Proposition 18.6), DIAG c
ASYMP (Proposition 19.7), and ASYMP is a closed linear sub-
space of BV (Proposition 18.4). Hence pNAD = pNA + DIAG <
ASYMP, and a fortiori pNAD — ASYMP.

It remains to prove that there is at most one value
on pNAD that is continuous and enjoys the diagonal property.
Indeed, if © is a value on pNAD with these properties, then
@ is determined on pNA by the uniqueness of the value on
pNA (Proposition 7.11), and on DIAG it must vanish identically
by the diagonal property (Section 19). Hence it is deter-
mined on pNA + DIAG, and so by continuity on its closure,
namely on- pNAD. This completes the proof of Proposition
41.1.
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Convention. For the remainder of this section, ®
will denote the unique value on pNAD provided by Proposi-
tion 41.1.

We are now ready to state the main result of this
section, which, together with Proposition 41.1, immedi-

ately implies Proposition 31.7.

PROPOSITION 41.2. Let a be u-integrable,

let u ¢ ul’ and let v be given by (30.1). Then

v is well-defined and is in pNAD, and the core

of v consists of the single point ov.

The proof of Proposition 41.2 will proceed in two
stages. First we shall prove a generalization of Theorem
F (Proposition 41.28). 1In this generalization the hypoth-

esis v ¢ pNA is replaced by*
(41.3) v ¢ pNAD N pNA'.

Since v ¢ pNA', the extension v* is defined,** and hence
the homogeneity condition in Theorem F makes sense. In
the conclusion, we are no longer justified in speaking

of "the" value; however, the conclusion remains true if
one refers to the unique value ¢ on pNAD provided by Prop-

osition 41.1.

*Recall that pNA' is the closure of pNA in the supre-
mum norm; see Section 22.

**See Proposition 22.10.
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In the second stage of the proof, we shall prove that
the v of Proposition 41.2 satisfies (41.3), and that it
is also superadditive and homogeneous of degree 1. The
proof of Proposition 41.2--and hence of Proposition 31,.7--
is then easily completed.

In the next few lemmas we shall make free use of the
notations and terminology of Part III, in particular of

Sections 22 and 23. We begin with a generalization of
Lemma 22.1.

LEMMA 41.4. Let & be a finite-dimensional

vector of measures in NA. Let g, ..., g, be

ideal set functions with

81 S+ S 8y

Then there are sets Ty, ..., T in C with

Tl c...C Tm

such that for all {1,

5(T;) = [g;98.

Proof. The proof is exactly analogous to that of
Lemma 22 1.

i R U U

LA

ks,

LA A -~ -~ st

i

e
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LEMMA 41.5. Let v e BV N pNA'., Then

vk ¢ 18V, and [lv¥| = |-

Remark. When we write || | we are, of course, referr-
ing to the variation norm. The supremum norm is denoted
by | ||', and the equation ||v*||' = |v]' has already been
establighed (see (22.8)).

Proof. Let ( be a chain

0=8)<8 S -+ S8, S 841 ™ X1

of ideal set functions. For a givene, let §;, ..., &
be vectors of measures in NA, and 61, ceey b positive

numbers, such that for all i,

If (£ - g)degll g 85 = |v*(£) - v¥(g))] < ¢;

the existence of such s and 6i follows from the continuity
of v* in the NA-topology (see (22.6)). Let £ be the vector
(gl, ceey gm), and define Ty ++.y T, in accordance with
Lemma 41.5. Then I("Ti - g;)d8 = 0 for all i, and hence
f(xTi - g;)d5; = 0 g &, for all i. Hence

lv(Ty) - v*(g;)| = lv*(xTi) - v¥(g,)| <.

Setting Ty = @ and T ,, = I, we deduce
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vl = 25ag 1v¥(8141) - v¥(gy)!
< Tiog IV(Ty,) - V(T + 2(m + 1)e g |lvl + 2(m + 1)e.
,? Letting ¢ = 0, we deduce “v*llQ < |lvll, and hence
= [vHl = supg vl < vl

Since the inequality |lvll < |lv*|| is obvious, the proof of

Lemma 41.5 is complete.

LEMMA 41.6. Let Ty, ..., T, be disjoint

measurable subsets of (0, 1). With each t in

each Ty, let there be associated a family wt

J ' of closed intervals* in (0, 1), one of whose

endpoints is t; assume moreover, that each ¥t

contains arbitrarily short intervals. Let

¥, =y

3 t = m
} i " Veer, ¥ End X =Uj .

Then for each ¢ > 0, there is a finite family

8 of mutually disjoint intervals in ¥, such

that if Si is the union of the intervals in

3 8N wi, then

*AIT intervals in this lemma and its proof are under-
stood to have positive length.
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M(S; +Ty) <,

where A is Lebesgue measure and '+" denotes the

symmetric difference.

Proof. Let us call T, pure left if for each t in T,

¥t contains arbitrarily short intervals whose left end-
point is t. Define pure right analogously, and call T,
pure if it is either pure left or pure right (or both).

First we prove the lemma in the case in which each‘Ti
is pure, proceeding by induction on m. The case in which
m = 1 and T, is pure left is proved in [T, §11.41, Lemmas
1 and 2, pp. 356-357]; the pure right case, of course, fol-
lows from the pure left éase by symmetry arguments.

Now assume that the lemma has been proved for m - 1;
and let Ty5 +..» T, and the sets Nt, ¥, and ¥ satisfy the
hypotheses of the lemma. Let ¥, = MyU ...UM, Apply-
ing the induction hypothesis (for ¢/m instead of e¢), we
obtain a family 8, of mutually disjoint intervals in ¥,
such that for i =1, ..., m - 1, if Si is the union of

the intervals in 8, N ¥, then

41.7) A (S + Ti) < e/m.

Let Ty =TV ... UT 4,and S, =8, U ... U8 ;. Note
that

it ot s
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Se + T (Ty +8) U .. U (T, _; +5 _7)»

and hence

A(Sy +Ty) s B=Le <.

Next, since T, is pure, we may assume w.l.o0.g. that it
is pure left. Let T, = Th/S*, and for t e T,,, let ﬂﬁ*
be the set of all intervals in Mi* whose left-hand end-
point is t and which do not intersect S,. vt is nonempty
and contains arbitrarily small intervals, because S, is
closed and ¥ contains arbitrarily small intervals whose
t
left-hand end point is t. Let ¥,, = UteTm Niw- Apply
the case m = 1 (with ¢/m instead of ¢) to T,, and ¥,,,

obtaining a finite family 8, of disjoint intervals in
¥45 such that

M(Sy + Tyy) < e/m,
where Sm is the union of the intervals in Sm. Let

8 =8,U8 . Since S, n Sy = @, the members of 8 are

disjoint. Furthermore, it may be verified that

Sp ¥ Ty © (Sp + Tug) U (S,\Ty);

hence




CRN S Y X S
* o T Pty o BRGNS ttrest O PSR SR A 63 2 57 8

-159~

€ , m=1
X(Sm + Tm) < X(Sm + T**) + x(s* + T*) < ﬁ'+ == = .

This, together with (41.7), completes the proof of the
lemma in the case in which all the T; are pure.

In the general case, let T%, for each i, be the set
of all t in Ty for which ¥, contains arbitrarily small
intervals whosc left-hand end-point is t; let T% = Ti\Tg.

L t R t L. .
Let ﬂi - UteTi ¥, and ﬂi = UteT% ¥-. Then T is pure

left and TE is pure right, so we may apply the case just
T, voey T, TN, ury TV
proved to the system consisting of Ty, ..., Tpr Tis -ovs Tpps
and the ¥t. If we use %-e instead of ¢, this yields a
finite family 8 of mutually disjoint intervals in ¥, such
L R i

that if Si and Si is the union of the intervals in 8 N ”L

and 8 n Mﬁ respectively, then
NSy +TH) <ze anda(sh +TH) < Fe.

Since

L, L R
Sy +T; € (S + T U (si+1'§),

it follows that

X(Si+Ti)<%e +-]2'-e =c,

and the proof of the iemma is complete.
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LEMMA 41.8. Let f be a nonnegative ex-

tended real-valued* function on (0, 1). For

each positive integer k .and each i with 0 <

i < k%, define

et S et st e o o

g{t D ifk g £(8) < (1 + 1)/K} for i < k2

Tik =

({t : k g £(t)} for i = kz. '
Then

SR ) ~ [L £(e)ae
i=0 k "‘Tik 40 &
i
as k - =,
Propf. This follows easily from any of the standard
definitions of the Lebesgue integral.

Let v* ¢ IBV. For each & > 0, define the &-norm

lv¥lls to be i
3}

}

§

sup T * - vk :

sup 2,-_=0 |v (gi+1) A4 (gi)ls ;

|

where the sup is over all chains . i

= *1.e., £ may take the value 4= as well as finite non-
negative values. :
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0=gps8 <.

A

Bm S 8mt1 T X1

such that for all g; and all s, s' ¢ I, we have
(41.9) Igi(s) - g; (")l < 8.

The restriction (41.9) means that the g; are "close" to
the diagonal; indeed, if g;(s) = g;(s') for all s, s' in
I, then 83 is of the form th, and so is on the diagonal.
Thus ||v*|; is the sup of the variation of v* over chains
which always remain in a §-neighborhood of the diagonal.
Note that |[v¥|, < |[v¥|; and so if v ¢ BV N pNA', then by

Lemma 41.5, it follows that
(41.10) Ivells < llvll.

The next lemma generalizes the hypothesis as well

as sharpens the conclusion of Lemma 23.1.

LEMMA 41.11. Let v e BV N pNA', and let

S € ¢. Then Iav*(t)|+ is_integrable over (0,1],
and for all 6 > 0,

fcl) Iav*(t)|+dt < vl

Proof. Fix 6 > 0. lLet k be a positive integer,

-—v

Define a partition {TO, Tys vovs T 2} of (0, 1) by
k
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{t: 1/k < lovk(e) | < (4 + 1)/K} for 1 < k>
41.12) T, =

{(t: kg lvk(e)l™ for i = k2.

For each t ¢ (0,1) there are numbers r, arbitrarily small

in absolute value, such that

r %0, Ir] <6, It ++! ¢ (0,1), and
(41.13)
vk(txy + txg) - v*(txy)
T

lave(e) 1t - | L

'<E.

With each t and r satisfying (41.13), associate the inter-
val whose endpoints are t and t + ¢; let ¥t be the family
of intervals so defined, Now apply Lemma 41.6 to the sys-
tem defined by {Ty, Ty, ..., rkz}, and the families ¥*.
This yields a family 8 of intervals satisfying the con-
clusions of that lemma (for given ¢). Denote the intervals

of 8 by Uy, ..., Up, where for all h, the right end-point

of Uy is left of the left end-point of Uyt this is pos~-

sible because the Uh are disjoint. Each Uh has end-points

t and t + ¢ satisfying (41.13); denote them by t, and t, + ™h

respectively. Now construct a chain 1 of ideal sets

0 =8) S8 £ S8p41 =%

by letting
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8oh-1 = thXp and 8 = tpXp t TiXg
if r >0, and

8oh1 = tpXp T ThXg and 8 = tuXp

if + < 0. Note that since 'Th' < & for all h, the chain

q satisfies the condition (41.9), and hence [v*||, 3 “V*"Q.

To evaluate "V*“Q, for each i relabel the intervals con-
stituting 8 n ¥, by U;q, ..., Uiq (where q depends on 1i);
these are some of the Uy and when i varies, we get all
tij e T;, and so by Lemma 41.6 and Formula (41.12), we

have

||V*||5 2 “V*"Q = zg;l |v*(thx1 + ThXS) - V*(thXI)I

ey * Tig) - v (EXy)

- A (U

Ih=1

vr(ey Xy + Tigxg) - V(e xg)

Z4%4] (U 4)

Ry il M(Ugy) = By B asy)

IR SYCAIEE SR YCA RS IR SYCAIEE 2

where Si = UjUij is as in Lemma 41.6. From Lemma 41.6
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we obtain

N(S; + Ty < e

combining this with the previous inequality, we obtain

. . \ 2,2
i i_1_ i . 5 R §
||v*||6 ;zii-x('ri) 'ezii‘ﬁ‘zii"('fi) - i

Letting ¢ -~ 0, we deduce
b i .]; ;
"V*“5 P4 Ei iy )‘(Ti) "k 1
But as k - =, we have by Lemma 41.8 that¥*
i 1 ; +
Z; e MTy) = [ 13vE(e) 1Tt
Since %-ﬂ 0 as k -~ », we deduce
vl 2 [g teve(e) 1 Fae.

This completes the proof of Lemma 41.11.

LEMMA 41.14. Let w+ r ¢ BV N pNA', where

w ¢ DIAG. Then for 6§ > 0 sufficiently small,

*The Ti depend on k as well as on i.
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Il + 0)*l, g lell-
Proof. Since w is in DIAG, it satisfies (19.1). Let
k, ¢(, and U correspond to w in accordance with (19.1).
Let 6 be such that

(41.15) (@t) ([¢(s) - tel| < 8) = ¢(S) ¢ U;

this is true for all sufficiently small 6. Let v =w + r.

For given ¢ > 0, let 0 be a chain

of ideal set functions satisfying (41.9), such that
(41.16) o4l > vkl - e

Since v ¢ pNA', we may find a polynomial in measures f°v,

where v is a vector of measures in NA+, such that
(41.17) lv - fov||' < e/4m;

from this and (22.8) it follows that ||(v - fov)*||' < ¢/4m,

and hence

(41.18) & - fov)*llQ < 2(m+ le/bm g ¢e.
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Now apply Lemma 41.4 to the vector measure § = ((, v),

obtaining a chain I' of sets
p=TgcTyc...cT T 43 =1
f‘ * in ¢ such that for all i,
g(T;) = [g;d8.

It follows that for all i, v(Ti) = Igidv, and so

(Fov)*(gy) = £(fggdv) = (£)(Ty);
hence
(41.19) I (Eow)*lg = vl

Next, for each i, since g; satisfies (41.9), there is a

number t, such that
“gi - tiXI" < 8.
Hence for each component Cp of ¢,

¢, (Ty)-teh = 1fggdc =g | = 1] (gg-tyxp)dey| € lag-tyxglde, < 8.
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Therefore [|¢(T;) - tye| < &, and so by (41.15), ¢(T;) ¢ U;

hence w(Ti) = 0, and so

(41.20) ||w||r =0,

Note also that by (41.17),

(41.21) lv - fovllp < 2(m + 1)e/4m g ¢.

Combining (41.16), (41.18), (41.19), (41.20), and (41.21),

we get

Ivlly s ¢ + lvkly g e + lIw-ev)*lg + [ (Fov)*lig g 2¢ + [Ifovllp
g 2 + |fov=vll + liv-vllp + lwllz g 3¢ + [Irfip + 0 g 3¢ + |l

Letting ¢ -+ 0, we obtain the desired result. This completes

the proof of Lemma 41.14.

The following proposition is an analogue of Theorem E.

PROPOSITION 41.22. Let v ¢ pNAD n pNA'.

Then for each S ¢ ¢, the derivative 3v*(t, S)

exists for almost all t in [0,1], and is inte-

grable over [0,1] as a function of t; and

(ev) (8) = j'éav*(t, S)dt.
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Proof. The proof follows the ideas of the proof of

Theorem E (Section 23). Define

v (txptrxe) -vr(tx.) vE(txrHrXe) ~v¥(ty <)
Av(t) = 1lim sup I_°S I lim inf I S 1

™0 T 0 T

(cf. (23.5)), and

1

b, = [gb,(E)dt.

From Lemma 41.9, we then obtain
0 g a, g 2[Elave(e)|Tdt < 2|lv4
§ v = 0 2 |6

for all 6 > 0 (cf. (23.6)); furthermore

L + by
whenever v, w e BV N pNA'. Now let v ¢ pNAD N pNA'; for
given ¢ > 0, let v =q + w + r, where q ¢ PNA, w ¢ DIAG,
and ||lr|l < e. From Theorem E it follows that bq = 0; hence

since w+ r =v - q ¢ BV N pNA', we get, using Lemma 41.14,
that for 8 sufficiently small,

04,5 bg ¥ by SO+ 2lw + o)*fl, < izl < e.

Letting ¢ ~ 0, we deduce 4, = 0. Hence av(t) = 0 for almost




rcrobirns oA

“‘"")""".‘\‘Sffi"w}'/gm,‘ N

-169-

all t, i.e., 3v*(t) exists a.e. for all v. Whenever it
exists we have [3v¥(t)| = Iav*(t)|+, and hence by Lemmas
41.11 and 41.5, we have, for all & > O,

(41.23) [3lave(e) 1de g [l g llox] = IIvil;

in particular, this implies the integrability of av*(t).

Now let
Ly o
ov = [gdv*(t)de;
then v is linear in v, and by (41.23),

(41.24) lavl < llvlls < livll

N

for all & > 0. For givene > 0, let v = q + w + r, where
q € pNA, w ¢ DIAG, and ||r|l < ¢. By Theorem E, ®q = 6q;
therefore by (41.24) and Lemma 41.14,
1(@@v)(8) - evl g eq) (8) - eql + |o(wtr)(S) - 6 (wtr)!
(41.25) g 0 + lo(wtr) (S)| + lo(wir)| g lo(wr) (S)] + || (wtr) il
< lowtr) (S) 1 + ||| < lo(wir)(S)] + ¢.

Now ¢ coincides with the asymptotic value on pNAD (Proposi-

tion (41.1), furthermore, since w and w + r are both in
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pNAD, so is r (though it may not be in pNA'). Since |lo| =1

for the asymptotic value (Proposition 18.1), it follows that
(41.26) loell g llell < e

On the other hand, w ¢ DIAG and ® has the diagonal property
(Proposition 19.7); hence vw = 0. Combining this with
(41.25) and (41.26), we obtain

lov(s) - evl g flo(w + o)|| + ¢ < llowll + llox|] +¢ g 2¢;

hence letting ¢ - 0, we deduce wv(S) = §v, as was to be
proved. This completes the proof of Proposition 41.22.

The following is an analogue of Proposition 27.8.

PROPOSITION 41.27. If* w e pNA', then

every member of the core of w is in NA.

Proof. The proof follows the ideas of that of Prop-
osition 27.8. What is needed is ttié existence of an NA+
measure v such that if T, Ty, ... is a sequence of sets

in ¢ with v(Ti) - 0, then (27.10) holds, i.e.,

w(l;) ~ 0 and  w(I\T,) - w(I);

*The same conclusion holds when w ¢ pNAD.
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this may be called* the continuity of ww.xr.t. v at @ and I.

To establish this, let wy, w,, ... be a sequence in pNA

such that

- » '—. .
v - wyll* - 0

Let V3 be probability measures in NA such that w5 << Vs

for all j. Set v = 2;=1 vj/ZJ. 1f v(Ti) - 0, then vj(Ti) -0

for all j, and hence as i ~ =,
wj(Ti) - 0 and wj(I\Ti) - wj(I).

For given ¢ > 0, pick j such that |[w - wjﬂ' < ¢e/2, and

let N be such that whenever i > N,

ij(Ti)l < ¢/2 and le(I\Ti) - chl)l <el/2.

R TN A AL famarsaa s SRR R I S i A it iae sk

Then whenever i > N,

lw(T )l <e and |w(I\T;) - w(I)| <,

.

¥Tt Is clear how this definition may be generalized
to cover continuity of w w.r.t. v at an arbitrary S. Com-
pare the discussion of Example 33.11, where continuity of
a set function at S is defined without véferring to v.
It may be seen that continuity at § is implied by continuity

at S w.r.t. some v in NA+; and this, in turn, is implied
by absolute continuity.
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i.e., (27.10) holds. Thus the desired continuity property
is established. The remainder of the proof is exactly as

in Proposition 27.8.

The following proposition is an analogue of Theorem F.

PROPOSITION 41.28. Let v be a superaddi-

tive set functior. in pNAD N pNA' that is homo-

geneous of degreé 1. Then there is a unique

point in the core of v, namely wv.

Proof. The proof follows the lines of the proof of
Theorem F rather closely. Results analogous to Lemmas
27.2, 27.4, 27.5, and Corollary 27.3; are readily established,
the only difference in the proofs being that references to
Theorem E must be replaced by references to Proposition
41.22. Thus it is established that ov is in the core of v,
and that it is the only member of the core of v that is
in NA. But by Proposition 41.27, there are no other members
of the core of NA, and so the proof of Proposition 41.28
is complete.

With this, the first stage in the proof of Proposition
41.2 is complete. To finish the proof of Proposition 41.2,
we must show that the v of that proposition is well-defined,
that it is in pNAD N pNA', and that it is superadditive and
homogeneous of degree 1.

Let & be any subset of the o~field ¢ of coalitions,

such that @ and I are in J. It is not required that &

b e S B A e

W ARBAY R R e e e

A A e W e,

A AP o ¢ RS

o N g, A

FYYy 7 NeSerReY L

e o e

i

col R




© Y A | A AT s <2

APy AR s

25 e I T dn b BT e wAOROANE s N

e A T S A
. N

PR

" . argn
catliora s o il TR

!

. - -
RS AR Y i Ci
g s
" X o "
e PR

vy

;

-173-

be a o-field. A real-valued function w on S with w(@) =0
is called a S-function. Monotonicity, bounded variation,
and the variation norm are defined for S-functions just as
they are for set-functions. Thus a S-function w i; mono-
tonic if 8, D S, ¢ & imply w(S;) 2 w(S,); w is of bounded

variation if it is the difference of monotonic functions;

and in that case, its (variation) norm |lw|]| is defined by
(41.29) "W“ = inf (Wl('I) + Wz(I))9

where the inf is taken over all monotonic S-functions Wy

and Wy such that w = Wy = Wy

LEMMA 41.30. If w is a J=function of

bounded~va;iation, then

ol = sup =¥_; lw(sy) - w(s;_ DI,

where the sup is taken over all chains

of S; in H. Furthermore, the inf in the

definition (41.29) of |wi| is attained.

Proof. The proof is similar to that of Proposition

4.1.
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LEMMA 41.31. Let w be a 8-function of

bounded variation. Then there exists a set

function v in BV such that v|8 = w and
vl = {lwi.
Proof. First let w be monotopic. Define v by
v(S) = sup {w(T) : Te & 4dnd Tc st
Clearly v is monotonic, and v.(I) = w(i). This complzates
the proof in case w is monotonic. L
In the general case, using Lemma 41.30, let vy and
Wy be monotonic f-functions .such that
W =W - Wy
and wy(I) + wy(I) = llwll. Let v, and v, be monotonic set
functions such that vllb =Wy, vzlﬁ = Wy, and V1GI) = wI(I),

VZ(I) = w2(I). Define v = vy = Va- Then

Il 5 llogll + llvyll = wy (D) + wyp(D) = vl

But again from Lemma 41.30 it is clear that [jv! 3 [lv|,

since v is an extension of w. This completes the proof of

Lemma 41.31.
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Throughout the remainder of this section, a will be f?
a fixed py-integrable function from I to Q, u will be a
fixed member of Uyps and v will be the set-function cor-
responding to a and u (i.e., v(3) = us(fg)); that it is
well-defined follows from Proposition 36.1. We will use :
the notation U for d-approximations to u (though U is not =
fixed throughout the discussion), and for given 1, we will
denote. by ¥ the set function corresponding to a and @ 3
(i.e., V(8) = ﬁs(gg)). Finally, ® will continue¢ to denote

the unique value on pNAD -given by Proposition 41.1.

LEMMA 41.32. For each & > 0, define

by ={Secc: ]I“gg = u(s)fall < 3.

Then for every ¢ > 0 there is a 6 > 0 such

that if,&;e‘ul;is a d-approximation to u, then

Proof. The proof is similar to that of Proposition
40.24, the restriction to B, taking the place of condition
(40.25). W.l.o.g.* let {g = e. Let 61 correspond to %ve

in accordance with Lemma 40.22; w.l.0.g. let 61 < 1l. Let

*Aﬁy commodity j for which IQJ = 0 may simply be ex- 3
cluded from consideration. ‘

MY Ty T T AT AN
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€9 = min (s]Z'- 815 %-e),

and choose 6, to correspond to €9 in accordance with Lemma
40.1. Let 6 = min (% 815 62).

Let w = v - ¥, and let

be a chain in B;. By Lyapunov's theorem in n dimensions,
it is always possible to insert finitely many additional

sets

S01s 5025 +++» 5115 5125 +++s +++» Sy Spos

in 36 into the chain so that

SO c SQ]. c Sll c...C S].C Sl]. c 512 C‘...C...C Sm c Sml

,C sz C’O.C Sml
and the measure of the difference between two neighboring

sets is ' < §; that is, if we relabel :the new sequerce

Ugs +-+» Up+1 =1, thenzu(Uk+1\Uk) < & for all k. Further-

‘more, by Lyapunov's theotrem (in n dimensions) we may guppose

w.l.0.g. that for one of the Uk’ say for Uq, we have¥*

*The one~-dimensional Lyapunov theorem is not suffi-
cieni because we must make sure that Uq é.ﬂs.
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g gl =3 81+ From U e b it follows that for all j,
q

Iﬂ al - £ all <25 ¢ %’6L’

q q
and hence
j _3 1 -
(41.33) ﬂ &g o tgs =6
q
and
; i3 D PSR S

(41.34) g_g >F 8, =78 =508,2¢,

q
Now

m . : P : _ -1
Zemo 1908143) = WS < 2R glwU ) - w(u) ! = 2325

From (41.34), Lemma 40.1, and the fact that . is a 6=

+ z{;q.

-approximation-~hence a fortiori a 6o-approximation--to u,

we then .obtain
P AL
stq g € 2 § 2 €.

Furthermore, since u is a é-approximation to u, it is

a

fortiori a¢81aapprdximétidn. Hence by the monotonicity

of v and ¥ and by (41.33) and Lemma 4C.24, we have, exactly

as in ‘the proof of Proposition 40.24, that
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-1 - 1 1 1
Eg_ogv(Uq) +v(Uq) <re +z;e ~Fe.
We conclude that
and it follows that

lvis, - vlo,ll = [Wls,] <.

This completes the proof of Lemma 41.32.

COROLLARY 41.35. v ¢ pNAD.

Proof. Let ¢ be given, and let 6 and it correspond
to ¢ in accordance with Lemma 41.32. By Lemma 41.31,
there then -exists a set-function r in BV such ‘that
rl.D6 = (v - %)lﬁb and
el = v = 9180 < e.
Then

ver=((v-%¥%-1r)+7.

Now (v = ¥ - r)|8; = 0, and hence v - ¥ =~ r ¢ DIAG; and

by Lemma 39.16, V ¢ pNA., Thus

. " v s X

M_..M..,
sl i o

e P i e et
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v - r ¢ pNA + DIAG.

Since ||r|| < ¢ and ¢ was chosen arbitrarily small, it fol-
lows that v is in the closure of pNA + DIAG. This com-
pletes the proof of Cgrolléry 41.35.

Let H' be the set of all superadditive set functions

in pNA' that are homogeneous of degree 1.

PROPOSITION 41.36. H' is c¢losed in. the

supremumn norm.

Proof. The proof is exactly analogous to that of

Proposition 27.12.

PROPOSITION 41.37. v e H'.

Proof. Let ¢ > 0 be given, let & correspond to
e/(l +% ig) in accordance with Proposition 37.11, and
let U ¢ U; be a b-approximation to u. Then for all S e &
we have
. 1+ zf a
-9 - » kD 2 - _ S~
'V(S‘) - V(S)' * |us(fsg) - u"S(ISg)' <€ T:TT.Q_ g €.

" Hence

v - ¥ = supg lv(S) = ¥(s)| <.

Since an appropriate 1 can be found (Proposition 35.6)
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and since ¥ ¢ H (Lemma 39.16), it follows that v is in

the closure of H in the supremum norm. But this is cer-

tainly included in the sup-closure of H', and so by Prop-
osition 41.36 in H'. The proof of Proposition 41.37 is
complete.

Proposition 41.2 follows immediately from Proposi-
tions 41.28, 41.35, and 41.37; Proposition 31.7 follows

immediately from Propositions 41.1 and 41.2. ' ]
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42. POSSIBILITIES FOR EXTENSIONS OF THE MAIN RESULTS

A. The Mixing Value

; In Section 31 the question was raised as to whether

.
M
3
o
3

i

A 4

Proposition 31.7 can be proved when the mixing value is
substituted for the asymptotic value. Here we will show
that this is indeed the case if it can be shown that v
(as defined in (30.1)) is in AC. Of course, if v 4 AC,
then v ¢ MIX, so that there is then no hope for proving
the analogue of Proposition 31.7. We do not know whether

or not v ¢ AC.

PROPOSITION 42.1. pNAD N AC < MIX.

Proof. The proof is patterned after that of Proposi-
tion 19.3 (which states, among other things, that DIAG n
AC ¢ MIX). Let v ¢ pNAD N AC. Let {el, €95 ...} be a
sequence tending to 0; then for each j we may find a decom-

position of v (depending on j),

3 v =y +'v2 + V3

where vy ¢ pNA, v, ¢ DIAG, and "V3" $ey Since v, ¢ pNA

MIX (Proposition 16.9), there is a probability measure

My corresponding to A4 in accordance with Proposition 14.1.
1

For each j, let k, ¢, and U (which, of course, depend on j)

NP ORPRPIPIPAP PURT TSRS VY

correspond to \Z) in accordance with (19.1), and let
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i. 1.k

Let

My = z;=1 ;%'uj‘

Let p be a probabiliéy measure in NA such that M, << M,

let {@1, PR ...} be a u-mixing sequence, and let R be a
measurable order. Now fix j for the time being; note that
“Vl << u and that €q <<H for all i. Proceeding exactly
as in the proof of Proposition 19.3, we conclude that there

is a positive integer my such that

¢(I(s; 0.8)) ¢ U

Morrss v, oV i
i ks -

for all s e I and m > my. It follows that for all such s

and m, we have
(42.2) vz(I(s; ®m£)) = 0.

For fixed m > my» let 2 = O and let W be in the

field (not o-field) H(2) generated by the initial segments

I(s; 2) (cf. the proof of Proposition 12.7). Then W can

be written in the form

i bt e

< P
Wo=uUj_1lty, 59y,
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i.e., as a finite union of disjoint 2-intervals, where
(42.3) s 2t 2 ... Qslitl.

P P

Since vy + v4 = v - vy € AC, it follows that @ (v, + Va3 2)
exists (Proposition 12.7), and so by (12.2) and 42.2),

lw(vz +vqy 2)W)| = P@(vz + Vi3 Q)(Ug=l[ti, si)l)!

1201 [0(vy + V35 2 (T(sg5 D)) - wlvy + vy3 2)(L(eys 2)]1

12801 [Gvg +v3) (T(sys 2)) - (vy +v3) (It 2))]1

322=1 [vs(I(si; 2)) - YB(I(ti; 2))1.

By (42.3), the last expression is the variation of vg over
a subchain of a certain chain, and so it is g’”vBH <€y

Thus we have

lo(vy +vy; 0 @) W) < e5
whenever W ¢ H(@m@); but since the field H(@me) generates
the o-field ¢ (by (12.3)), it follows from a standard ap-

proximation argument* that

*One uses [Hll, p. 56, Theorem D. Compare the end
of the proof of ~“Theorem 12.7.
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i

|w(v2 + Vg3 @me)(s)l S €5

for all’S ¢ C; of course this holds for all m > my. From
this, v; ¢ MIX (Proposition 16.9), and Proposition 14.1,
it follows that for all S e C,

lim sup___ o(v; @me)(s)
< lim w(vl; @me)(s) + 1lim sup w(vz +vg;3 @me)(s)

< (CPV]_) (s) + ej:
where vy is the mixing value (or, for that matter, the

unique value on pNA). Similarly
lim infm*o o(v; 0,R)(S) 2 val)(s) - €5
Hence

lim sup @ (v; @me)(s) « Yim inf ¢ (v; @me)(s) < 2éj.

Now the left side of this inequality is independent of j;
so we may let j = &, and conclude that lim Q(v;~®m?)(s)
exists. By Proposition 14.1, this completes the proof of

Lémna 42.1.
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PROPOSITION 42.4. There is exactly one

value on pNAD N AC that is continuous in_the

variation norm and enjoys the diagonal prop-

erty. This value coincides with the mixing

value on pNAD N AC, as well as with the value

o of Proposition 41.1

Proof. Since we have shown that pNAD N AC c MIX, it
is only necessary to establish the uniqueness in the first

sentence of the proposition. Now

pNAD N AC = (pNA + DIAG) N AC = (pNA F DIAG) N AC

= pNA + (DIAG n AC),

since pNA © AC. The proof of uniqueness is now completed
just as in Proposition 41.1, except that DIAG N AC must be
substituted for DIAG. This completes the proof of Prop-
osition 42.4.

Suppose now that the hypotheses of Proposition 31.7
are satisfied, and suppose further that v ¢ AC. Then by
Proposition 41.2, v is well-defined, v ¢ pNAD N AC, and
the core of v consists of the single point @v, where %
is the value of Proposition 41.1. But by Proposition 42.4,
ov coincides with the mixing value of v as well. Thus we
have shown that if v ¢ AC, then the mixing value of v

exists and is the unique point in the core of v.




B. Positivity of Initial Resources

Propositions 31.5, 31.7, 33.2, and 40.26 give condi-
tions under which the positivity condition (condition
(31.4)) can be dispensed with. It is, however, possible
that it can be dispensed with altogether; i.e., that The-
orem G remains true if this condition is simply dropped,
without substituting anything for it. We have not been

able either to prove or disprove this possibility.

C. Strict Monotonicty of u

Our proofs make extensive use, especially in Section
37, of the assumption that each of the u(x, s) be strictly
increasing_in x. It is, however, possiﬁle that a careful
treatment might be able to dispense with this assumption,
particularly under certain conditions (such as (31.4)).
Compare Proposition 2.2 of [A-P], which would also be con-
siderably easier to ﬁrove if one would assume that the u-

functions are strictly increasing in x.

D. Attainment of the Max in the Definition of v

This question was treated via a number of examples
in Subsection D of Section 33, where we showed that it
is hopeless to try to extend our results to the case in
which the max is not attained, at least in v(I). The
question arises, though, whether it is necessary to assume
the asymptotic condition (31.2), or whether it would not

be enough simply to assume that
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(42.5) v(I) 1is attained
or
(42.6) all the v(8) are attained

or something of that nature.

Aesthetically, an "explicit" condition like (31.2)
is preferable to a condition like (42.5), since given a
specific family of u-functions, it may be difficult to
tell whether (42.5) holds. The mathematical question of
whether (31.2) can be replaced by (42.5) stilil remains,ﬁ;
though.

Our method of proof is based on approximations by _
u's of finite type, thig is based on the norm on 84 defined
in Section 35, and this;in turn depends essentially on *
(31.2). Thus (31.2) isfuse& not -only to~estdb1ishvthat»
the v(S) are aftained, but also directiy in the proof.
It appears that if one wishes to subscitutew(ﬁz.s) or
(42.6), one would nee@ an entirely new line of prcof. We
do not,>of course, have a counterexample: ‘

The most natural candidate for a replacgmént for -
(31.2) would seem to be neither (42.5) mor (42.6), but

rather the stronger

42.7) us(a) is attained for all S ¢ ¢ and all a ¢ .
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Condition (42.7) is equivalent to the coudition that for
any S ¢ ¢, the integral of the subgraphs® of u(-, s) over
s ¢ S be closed. Our problem is unsolved when any one of
(42.5), (42.6), or (42.7) is substituted for (31.2).

In the extreﬁely épecial case in which u is of finite
type and all the u(+, s) are concave, the methods of Sec-
AAtiqﬁ 39 can probably be pushed through; that is to éay,

1 though we have not .checked the details, we believe that

in this case Theorem G can be proved Without\aSSpmptioﬁs
(31.2) and (31.4). In any event, (42.7) hold§ in this case,
because the subgraph of the function ug is a finite sum of
closed subgraphs; this must be closed, since all the sub-

graphs -are in the nonnegative orthant.*¥

E. Dispensing with Assumption (2.1)

Assumption (2.1),:hccording té which (I, ¢) is iso-
mofphic to the unit interval with the Borel &afield, is
needed in this part only because without it there may be
mcre than one value on pNA. Thus Proposition 31.7 remains
true as it stands even without (2.1j, and Theorem G and

Proposition 31.5 remain true if "the value ov' appearing
) P

*The subgraph of a nonnegative function £ is here de-
fined to be !sx, y) : 0<y < £f(x)}. In Section 37 we

used the same term for the set {(x, y) : y € £(x)}; usually
it doesn't make much difference which way one defines this
term, but here the condition y > 0 is convenient, as we
shall see below.

**This is the reason for defining the subgraph by
0 < v < £(x) rather than just by y g f(x).
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at the end of the statement of Theorem G is interpreted
to be that* value for which @(uK) = u for all NA probability
measures yu and all k. \ ;

The theorems of [A-P] that we have qucted here depend
on the theory of integrals of set-valued functiohs=1A7},
this in turn depends on a selection theorem of von Neumatin
[VN, p. 448, Lemma 5], and this in turn depends on (2.1).
But von Neumann's theorem‘caﬁ\be generalized [A6] SO as
not to depend on (2.1), so for the purpose of applying

the results of [A-P], (2.1) is not neededf

*¥It can be seen by the methods of Part I that there-
is a unique such value, and that it obeys the integral
formula ?3.1). ‘
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